首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 724 毫秒
1.
By using a modified technique to measure glucose uptake in Saccharomyces cerevisiae, potential uncertainties have been identified in previous determinations. These previous determinations had led to the proposal that S. cerevisiae contained a constitutive low-affinity glucose transporter and a glucose-repressible high-affinity transporter. We show that, upon transition from glucose-repressed to -derepressed conditions, the maximum rate of glucose transport is constant and only the affinity for glucose changes. We conclude that the transporter or group of transporters is constitutive and that regulation of glucose transport occurs via a factor that modifies the affinity of the transporters and not via the synthesis of different kinetically independent transporters. Such a mechanism could, for instance, be accommodated by the binding of kinases causing a change in affinity for glucose.  相似文献   

2.
Candida intermedia PYCC 4715 was previously shown to grow well on xylose and to transport this sugar by two different transport systems: high-capacity and low-affinity facilitated diffusion and a high-affinity xylose-proton symporter, both of which accept glucose as a substrate. Here we report the isolation of genes encoding both transporters, designated GXF1 (glucose/xylose facilitator 1) and GXS1 (glucose/xylose symporter 1) respectively. Although GXF1 was isolated by functional complementation of an HXT-null (where Hxt refers to hexose transporters) Saccharomyces cerevisiae strain, isolation of the GXS1 cDNA required partial purification and micro-sequencing of the transporter, identified by its relative abundance in cells grown on low xylose concentrations. Both genes were expressed in S. cerevisiae and the kinetic parameters of glucose and xylose transport were determined. Gxs1 is the first yeast xylose/glucose-H+ symporter to be characterized at the molecular level. Comparison of its amino acid sequence with available sequence data revealed the existence of a family of putative monosaccharide-H+ symporters encompassing proteins from several yeasts and filamentous fungi.  相似文献   

3.
The filamentous fungusAspergillus niger accumulates large levels of citric acid in the medium when grown under conditions favouring a high rate of sugar catabolism. With the aim of understanding the mechanisms involved in this process we investigated glucose transport in this fungus. To this end a medium was designed that enables growth of the fungus into a fine, hairy filamentous mycelium, suitable for transport studies. It was found thatA. niger contains a single, high-affinity glucose transporter when grown on a low (1% w/v) glucose concentration, but forms an additional low-affinity transporter when grown on a high (15% w/v) glucose concentration. Both glucose transporters exhibit decreased activities at low pH and are inhibited by citric acid. However, the activity of the low-affinity transporter is much less affected by these conditions. Two 2-deoxyglucose-resistant (dgr) mutants ofA. niger, which produce citric acid at a much lower rate than the parent strain, are impaired in the formation of the low-affinity transporter, but form the high-affinity transporter with higher activities. We conclude that the low-affinity glucose transporter takes part in the mechanism by whichA. niger responds to high extracellular glucose concentrations leading to citric acid accumulation.  相似文献   

4.
5.
The goal of this investigation was to determine the effect of a xylose transport system on glucose and xylose co-consumption as well as total xylose consumption in Saccharomyces cerevisiae. We expressed two heterologous transporters from Arabidopsis thaliana in recombinant xylose-utilizing S. cerevisiae cells. Strains expressing the heterologous transporters were grown on glucose and xylose mixtures. Sugar consumption rates and ethanol concentrations were determined and compared to an isogenic control strain lacking the A. thaliana transporters. Expression of the transporters increased xylose uptake and xylose consumption up to 46% and 40%, respectively. Xylose co-consumption rates (prior to glucose depletion) were also increased by up to 2.5-fold compared to the control strain. Increased xylose consumption correlated with increased ethanol concentration and productivity. During the xylose/glucose co-consumption phase, strains expressing the transporters had up to a 70% increase in ethanol production rate. It was concluded that in these strains, xylose transport was a limiting factor for xylose utilization and that increasing xylose/glucose co-consumption is a viable strategy for improving xylose fermentation.  相似文献   

6.
K+ transport in living cells must be tightly controlled because it affects basic physiological parameters such as turgor, membrane potential, ionic strength, and pH. In yeast, the major high-affinity K+ transporter, Trk1, is inhibited by high intracellular K+ levels and positively regulated by two redundant "halotolerance" protein kinases, Sat4/Hal4 and Hal5. Here we show that these kinases are not required for Trk1 activity; rather, they stabilize the transporter at the plasma membrane under low K+ conditions, preventing its endocytosis and vacuolar degradation. High concentrations (0.2 M) of K+, but not Na+ or sorbitol, transported by undefined low-affinity systems, maintain Trk1 at the plasma membrane in the hal4 hal5 mutant. Other nutrient transporters, such as Can1 (arginine permease), Fur4 (uracil permease), and Hxt1 (low-affinity glucose permease), are also destabilized in the hal4 hal5 mutant under low K+ conditions and, in the case of Can1, are stabilized by high K+ concentrations. Other plasma membrane proteins such as Pma1 (H+ -pumping ATPase) and Sur7 (an eisosomal protein) are not regulated by halotolerance kinases or by high K+ levels. This novel regulatory mechanism of nutrient transporters may participate in the quiescence/growth transition and could result from effects of intracellular K+ and halotolerance kinases on membrane trafficking and/or on the transporters themselves.  相似文献   

7.
Since the opportunistic pathogen Pneumocystis carinii grows only slowly in vitro, the mechanism of glucose uptake was investigated to better understand how the organism transports nutrients. Using the non-metabolizable analogue 2-deoxyglucose, two uptake systems were detected with Q(10) values of 2.12 and 2.09, respectively. One had a high affinity (K(m)=67.5 microM) and the other a low affinity (K(m)=5.99 mM) for 2-deoxyglucose uptake. Glucose or deoxyglucose phosphate products from transported radiolabeled substrates were not detected during the incubation times used in this study. Both systems were inhibited by mannose, galactose, fructose, galactosamine, glucosamine, and glucose but not by allose, 5-thioglucose, xylose, glucose 6-phosphate and glucuronic acid. Salicylhydroxamate, KCN, iodoacetate, and 2,4-dinitrophenol inhibited the high-affinity transporter, suggesting it required ATP. Ouabain, monensin, carbonyl cyanide m-chlorophenylhydrazone, and N,N'-dicyclohexylcarbodiimide also inhibited deoxyglucose uptake, as did the replacement of Na(+) in the incubation medium with choline, indicating requirements for Na(+) and H(+). The high-affinity system was also inhibited by the protein synthesis inhibitors cycloheximide and chloramphenicol. In contrast, the low-affinity system transported deoxyglucose by facilitated diffusion mechanisms. Unlike the human erythrocyte glucose transporter GLUT1, the P. carinii transporters recognized fructose and galactose and were relatively insensitive to cytochalasin B, suggesting that the P. carinii glucose transporters may be good drug targets.  相似文献   

8.
Characterization and quantification of the Hxt2 (hexose transport) protein of Saccharomyces cerevisiae indicate that it is one of a set of differentially expressed high-affinity glucose transporters. The protein product of the HXT2 gene was specifically detected by antibodies raised against a synthetic peptide encompassing the 13 carboxyl-terminal amino acids predicted by the HXT2 gene sequence. Hxt2 migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a broad band or closely spaced doublet with an average M(r) of 47,000. Hxt2 cofractionated with the plasma membrane ATPase, Pma1, indicating that it is a plasma membrane protein. Hxt2 was not solubilized by high pH or urea but was solublized by detergents, which is characteristic of an integral membrane protein. Expression of the Hxt2 protein was measured under two different conditions that produce expression of high-affinity glucose transport: a medium shift from a high (2.0%) to a low (0.05%) glucose concentration (referred to below as high and low glucose) and growth from high to low glucose. Hxt2 as measured by immunoblotting increased 20-fold upon a shift from high-glucose to low-glucose medium, and the high-affinity glucose transport expressed had a strong HXT2-dependent component. Surprisingly, Hxt2 was not detectable when S. cerevisiae growing in high glucose approached glucose exhaustion, and the high-affinity glucose transport expressed under these conditions did not have an HXT2-dependent component. The role of Hxt2 in growth during aerobic batch culture in low-glucose medium was examined. An hxt2 null mutant grew and consumed glucose significantly more slowly than the wild type, and this phenotype correlated directly with appearance of the Hxt2 protein.  相似文献   

9.
Conversion of xylose to xylitol by recombinant Saccharomyces cerevisiae expressing the XYL1 gene, encoding xylose reductase, was investigated by using different cosubstrates as generators of reduced cofactors. The effect of a pulse addition of the cosubstrate on xylose conversion in cosubstrate-limited fed-batch cultivation was studied. Glucose, mannose, and fructose, which are transported with high affinity by the same transport system as is xylose, inhibited xylose conversion by 99, 77, and 78%, respectively, reflecting competitive inhibition of xylose transport. Pulse addition of maltose, which is transported by a specific transport system, did not inhibit xylose conversion. Pulse addition of galactose, which is also transported by a specific transporter, inhibited xylose conversion by 51%, in accordance with noncompetitive inhibition between the galactose and glucose/ xylose transport systems. Pulse addition of ethanol inhibited xylose conversion by 15%, explained by inhibition of xylose transport through interference with the hydrophobic regions of the cell membrane. The xylitol yields on the different cosubstrates varied widely. Galactose gave the highest xylitol yield, 5.6 times higher than that for glucose. The difference in redox metabolism of glucose and galactose was suggested to enhance the availability of reduced cofactors for xylose reduction with galactose. The differences in xylitol yield observed between some of the other sugars may also reflect differences in redox metabolism. With all cosubstrates, the xylitol yield was higher under cosubstrate limitation than with cosubstrate excess.  相似文献   

10.
Plasmodium falciparum is incapable of de novo purine biosynthesis, and is absolutely dependent on transporters to salvage purines from the environment. Only one low-affinity adenosine transporter has been characterized to date. In the present study we report a comprehensive study of purine nucleobase and nucleoside transport by intraerythrocytic P. falciparum parasites. Isolated trophozoites expressed (i) a high-affinity hypoxanthine transporter with a secondary capacity for purine nucleosides, (ii) a separate high-affinity transporter for adenine, (iii) a low-affinity adenosine transporter, and (iv) a low-affinity/high-capacity adenine carrier. Hypoxanthine was taken up with 12-fold higher efficiency than adenosine. Using a parasite clone with a disrupted PfNT1 (P. falciparum nucleoside transporter 1) gene we found that the high-affinity hypoxanthine/nucleoside transport activity was completely abolished, whereas the low-affinity adenosine transport activity was unchanged. Adenine transport was increased, presumably to partly compensate for the loss of the high-affinity hypoxanthine transporter. We thus propose a model for purine salvage in P. falciparum, based on the highly efficient uptake of hypoxanthine by PfNT1 and a high capacity for purine nucleoside uptake by a lower affinity carrier.  相似文献   

11.
Summary A low-affinity and a high-affinity sylose proton symport operated simultaneously in both starved and non-starved cells of Pichia stipitis. Glucose competed with xylose for transport by the low-affinity system and inhibited xylose transport by the high-affinity system non-competitively. The low affinity system was subject to substrate inhibition when glucose but not when xylose was the substrate. The differences between the characteristics of monosaccharide transport by Pichia stipitis and its imperfect state, Candida shehatae, are discussed.  相似文献   

12.
We have investigated the transport of maltose in a genetically defined maltose-fermenting strain of Saccharomyces cerevisiae carrying the MAL1 locus. Two kinetically different systems were identified: a high-affinity transporter with a Km of 4 mM and a low-affinity transporter with a Km of 70 to 80 mM. The high-affinity maltose transporter is maltose inducible and is encoded by the MAL11 (and/or MAL61) gene of the MAL1 (and/or MAL6) locus. The low-affinity maltose transporter is expressed constitutively and is not related to MAL11 and/or MAL61. Both maltose transporters are subject to glucose-induced inactivation.  相似文献   

13.
14.
The rate of D-glucose uptake by cells that had been deprived of sugar for 18-24h was consistently observed to be 15-20 times higher than that in control cells maintained for the same length of time in medium containing glucose. This increased rate of glucose transport by sugar-starved cells was due to a 3-5-fold increase in the Vmax. value of a low-affinity system (Km 1 mM) combined with an increase in the Vmax of a separate high-affinity system (Km 0.05-0.2 mM). The high-affinity system, which was most characteristic of starved cells, was particularly sensitive to low concentrations of the thiol reagent N-ethylmaleimide; 50% inhibition of uptake occurred at approx. 0.01 mM-N-ethylmaleimide. In contrast with the high-affinity system, the low-affinity system of either the fed cells or the starved cells was unaffected by N-ethylmaleimide. In addition to the increases in the rate of D-glucose transport, cells deprived of sugar had increased rates of transport of 3-O-methyl-D-glucose and 2-deoxy-D-glucose. No measurable high-affinity transport system could be demonstrated for the transport of 3-O-methylgucose, and N-ethylmaleimide did not alter the initial rate. Thus the transport of 3-O-methyglucose by both fed and starved cells was exclusively by the N-ethylmaleimide-insensitive low-affinity system. The low-affinity system also appeared to be the primary means for the transport of 2-deoxyglucose by fed and starved cells. However, some of the transport of 2-deoxyglucose by starved cells was inhibited by N-ethylmaleimide, suggesting that 2-deoxyglucose may also be transported by a high-affinity system. The results of experiments that measured transport kinetics strongly suggest that glucose can be transported by a least two separate systems, and 3-O-methylglucose and 2-deoxyglucose by one. Support for these interpretations comes from the analysis of the effects of N-ethylmaleimide and cycloheximide as well as from the results of competition experiments. The uptake of glucose is quite different from that of 2-deoxyglucose and 3-O-methylglucose. The net result of sugar starvation serves to emphasize these differences. The apparent de-repression of the transport systems studied presents an interesting basis for further studies of the regulation of transport in a variety of cells.  相似文献   

15.
Glucose transport in the yeast Kluyveromyces marxianus proceeds by two functionally and presumably structurally distinct transporters depending on the carbon source of the culture medium. In lactose-grown cells, glucose was taken up through a high-affinity H+-sugar symporter (Km = 0.09 mM), whereas a low-affinity transporter (Km = 3.5 mM) was utilized in glucose-grown cells. The two transporters exhibited different substrate specificities. Galactose was demonstrated to be a selective substrate of the H+-glucose symporter (Km = 0.14 mM) and did not significantly enter glucose-grown cells. Fructose was a preferential substrate of the low-affinity carrier (Km = 3.5 mM), but it entered lactose-grown cells through a high-affinity H+-fructose symporter distinct from the H+-glucose one. Other putative substrates of the two glucose transporters were identified by competition experiments. 2-Deoxyglucose recognized both carriers with a similar affinity, while the non-phosphorylatable analogues 6-deoxyglucose, 3-O-methylglucose and D-fucose exhibited a 10-30 fold preference for the high-affinity transporter.  相似文献   

16.
17.
Saccharomyces cerevisiae TMB3001 has previously been engineered to utilize xylose by integrating the genes coding for xylose reductase (XR) and xylitol dehydrogenase (XDH) and overexpressing the native xylulokinase (XK) gene. The resulting strain is able to metabolize xylose, but its xylose utilization rate is low compared to that of natural xylose utilizing yeasts, like Pichia stipitis or Candida shehatae. One difference between S. cerevisiae and the latter species is that these possess specific xylose transporters, while S. cerevisiae takes up xylose via the high-affinity hexose transporters. For this reason, in part, it has been suggested that xylose transport in S. cerevisiae may limit the xylose utilization.We investigated the control exercised by the transport over the specific xylose utilization rate in two recombinant S. cerevisiae strains, one with low XR activity, TMB3001, and one with high XR activity, TMB3260. The strains were grown in aerobic sugar-limited chemostat and the specific xylose uptake rate was modulated by changing the xylose concentration in the feed, which allowed determination of the flux response coefficients. Separate measurements of xylose transport kinetics allowed determination of the elasticity coefficients of transport with respect to extracellular xylose concentration. The flux control coefficient, C(J) (transp), for the xylose transport was calculated from the response and elasticity coefficients. The value of C(J) (transp) for both strains was found to be < 0.1 at extracellular xylose concentrations > 7.5 g L(-1). However, for strain TMB3260 the flux control coefficient was higher than 0.5 at xylose concentrations < 0.6 g L(-1), while C(J) (transp) stayed below 0.2 for strain TMB3001 irrespective of xylose concentration.  相似文献   

18.
Xylose-utilising yeasts were screened to identify strains with high xylose transport capacity. Among the fastest-growing strains in xylose medium, Candida intermedia PYCC 4715 showed the highest xylose transport capacity. Maximal specific growth rate was the same in glucose and xylose media (mu(max)=0.5 h-1, 30 degrees C). Xylose transport showed biphasic kinetics when cells were grown in either xylose- or glucose-limited culture. The high-affinity xylose/proton symport system (Km = 0.2 mM, Vmax = 7.5 mmol h-1 g-1) was more repressed by glucose than by xylose. The less specific low-affinity transport system (K = 50 mM, Vmax = 11 mmol h-1 g-1) appeared to operate through a facilitated-diffusion mechanism and was expressed constitutively. Inhibition experiments showed that glucose is a substrate of both xylose transport systems.  相似文献   

19.
Sinusoidal transport of reduced glutathione (GSH) is a carrier-mediated process. Perfused liver and isolated hepatocyte models revealed a low-affinity transporter with sigmoidal kinetics (K(m) approximately 3.2-12 mM), while studies with sinusoidal membrane vesicles (SMV) revealed a high-affinity unit (K(m) approximately 0.34 mM) besides a low-affinity one (K(m) approximately 3.5-7 mM). However, in SMV, both the high- and low-affinity units manifested Michaelis-Menten kinetics of GSH transport. We have now established the sigmoidicity of the low-affinity unit (K(m) approximately 9) in SMV, consistent with other models, while the high-affinity unit has been retained intact with Michaelis-Menten kinetics (K(m) approximately 0.13 mM). We capitalized on the negligible cross-contributions of the two units to total transport at the low and high ends of GSH concentrations and investigated their characteristics separately, using radiation inactivation, as we did in canalicular GSH transport (Am. J. Physiol. 274 (1998) G923-G930). We studied the functional sizes of the proteins that mediate high- and low-affinity GSH transport in SMV by inactivation of transport at low (trace and 0.02 mM) and high (25 and 50 mM) concentrations of GSH. The low-affinity unit in SMV was much less affected by radiation than in canalicular membrane vesicles (CMV). The target size of the low-affinity sinusoidal GSH transporter appeared to be considerably smaller than both the canalicular low- and high-affinity transporters. The high-affinity unit in SMV was markedly inactivated upon irradiation, revealing a single protein structure with a functional size of approximately 70 kDa. This size is indistinguishable from that of the high-affinity GSH transporter in CMV reported earlier.  相似文献   

20.
The competition between the yeasts Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 for glucose was studied in sugar-limited chemostat cultures. Under aerobic conditions, C. utilis always successfully completed against S. cerevisiae. Only under anaerobic conditions did S. cerevisiae become the dominant species. The rationale behind these observations probably is that under aerobic glucose-limited conditions, high-affinity glucose/proton symporters are present in C. utilis, whereas in S. cerevisiae, glucose transport occurs via facilitated diffusion with low-affinity carriers. Our results explain the frequent occurrence of infections by Crabtree-negative yeasts during bakers' yeast production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号