首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H(4)B is an essential catalytic cofactor of the mNOSs. It acts as an electron donor and activates the ferrous heme-oxygen complex intermediate during Arg oxidation (first step) and NOHA oxidation (second step) leading to nitric oxide and citrulline as final products. However, its role as a proton donor is still debated. Furthermore, its exact involvement has never been explored for other NOSs such as NOS-like proteins from bacteria. This article proposes a comparative study of the role of H(4)B between iNOS and bsNOS. In this work, we have used freeze-quench to stop the arginine and NOHA oxidation reactions and trap reaction intermediates. We have characterized these intermediates using multifrequency electron paramagnetic resonance. For the first time, to our knowledge, we report a radical formation for a nonmammalian NOS. The results indicate that bsNOS, like iNOS, has the capacity to generate a pterin radical during Arg oxidation. Our current electron paramagnetic resonance data suggest that this radical is protonated indicating that H(4)B may not transfer any proton. In the 2nd step, the radical trapped for iNOS is also suggested to be protonated as in the 1st step, whereas it was not possible to trap a radical for the bsNOS 2nd step. Our data highlight potential differences for the catalytic mechanism of NOHA oxidation between mammalian and bacterial NOSs.  相似文献   

2.
The heme domain (iNOS(heme)) of inducible nitric oxide synthase (NOS) was expressed in Escherichia coli and purified to homogeneity. Rapid freeze-quench (RFQ) EPR was used to monitor the reaction of the reduced iNOS(heme) with oxygen in the presence and absence of substrate. In these reactions, heme oxidation occurs at a rate of approximately 15 s(-)(1) at 4 degrees C. A transient species with a g = 2.0 EPR signal is also observed under these conditions. The spectral properties of the g = 2.0 signal are those of an anisotropic organic radical with S = (1)/(2). Comparison of the EPR spectra obtained when iNOS(heme) is reconstituted with N5-(14)N- and (15)N-substituted tetrahydrobiopterin (H(4)B) shows a hyperfine interaction with the pterin N5 nitrogen and identifies the radical as the one-electron oxidized form (H(3)B.) of the bound H(4)B. Substitution of D(2)O for H(2)O reveals the presence of hyperfine-coupled exchangeable protons in the H(4)B radical. This radical forms at a rate of 15-20 s(-)(1), with a slower decay rate that varies (0.12-0.7 s(-)(1)) depending on the substrate. At 127 ms, H(3)B. accumulates to a maximum of 80% of the total iNOS(heme) concentration in the presence of arginine but only to approximately 2.8% in the presence of NHA. Double-mixing RFQ experiments, where NHA is added after the formation of H(3)B., show that NHA does not react rapidly with H(3)B. and suggest that NHA instead prevents the formation of the H(4)B radical. These data constitute the first direct evidence for an NOS-bound H(3)B. and are most consistent with a role for H(4)B in electron transfer in the NOS reaction.  相似文献   

3.
A series of compounds was rationally designed as inhibitors of dimer formation of the inducible isoform of nitric oxide synthase, and subsequent nitric oxide production. The conformation of two fragments obtained from a crystal structure was utilized to design a tether connecting those same two fragments. The resulting compounds were potent dimerization inhibitors that bound to the enzyme in a similar conformation as the fragments.  相似文献   

4.
J M Hevel  M A Marletta 《Biochemistry》1992,31(31):7160-7165
Nitric oxide synthase (NOS) (EC 1.14.23) catalyzes the oxidation of L-arginine to citrulline and nitric oxide. The complex reaction carried out by NOS, which involves NADPH, O2, and enzyme-bound FAD, FMN, and tetrahydrobiopterin (BH4), has only recently begun to be elucidated. Herein we report the characterization of the pterin requirement of murine macrophage NOS. Although purified NOS activity was not dependent on BH4, activity was significantly enhanced by BH4 in a concentration-dependent fashion. NOS purified in the absence of added BH4 was found to contain substoichiometric concentrations of enzyme-bound pterin, where increased concentrations of bound pterin correlated with an increase in activity when assayed in the absence of exogenous BH4. However, NOS purified in the presence of BH4 followed by gel filtration exhibited a 1 mol of pterin:1 mol of NOS 130-kDa subunit stoichiometry and activity that was essentially independent of exogenous BH4. Experiments to probe a redox role for the pterin were carried out using pterin analogues. 6(R,S)-Methyltetrahydropterin was found to increase NOS activity in enzyme purified in the absence of BH4. However, the deaza analogue, 6(R,S)-methyl-5-deazatetrahydropterin, was not only incapable of supporting enzymatic turnover but also inhibited citrulline formation in a concentration-dependent manner. Overall, these results support a role for BH4 in the NOS reaction that involves stabilization of the enzyme and redox chemistry wherein a 1:1 stoichiometry between bound pterin and NOS subunit results in maximum activity.  相似文献   

5.
Nitric oxide (NO) generated by inducible NO synthase (iNOS) contributes critically to inflammatory injury and host defense. While previously thought as a soluble protein, iNOS was recently reported to form aggresomes inside cells. But what causes iNOS aggresome formation is unknown. Here we provide evidence demonstrating that iNOS aggresome formation is mediated by its own product NO. Exposure to inflammatory stimuli (lipopolysaccharide and interferon-γ) induced robust iNOS expression in mouse macrophages. While initially existing as a soluble protein, iNOS progressively formed protein aggregates as a function of time. Aggregated iNOS was inactive. Treating the cells with the NOS inhibitor N-nitro-l-arginine methyl ester (L-NAME) blocked NO production from iNOS without affecting iNOS expression. However, iNOS aggregation in cells was prevented by L-NAME. The preventing effect of NO blockade on iNOS aggresome formation was directly observed in GFP-iNOS-transfected cells by fluorescence imaging. Moreover, iNOS aggresome formation could be recaptured by adding exogenous NO to L-NAME-treated cells. These studies demonstrate that iNOS aggresome formation is caused by NO. The finding that NO induces iNOS aggregation and inactivation suggests aggresome formation as a feedback inhibition mechanism in iNOS regulation.  相似文献   

6.
Tetrahydrobiopterin (BH4) is one of the cofactors of nitric oxide synthase (NOS), and the synthesis of BH4 is induced as well as inducible NOS (iNOS) by lipopolysaccharide (LPS) and/or cytokines. BH4 has a protective effect against the cytotoxicity induced by nitric oxide (NO) and/or reactive oxygen species in various types of cells. The purpose of this study was to examine whether or not an excess of BH4 is present during the production of NO by iNOS in LPS-treated de-endothelialized rat aorta. Addition of LPS (10 microg/ml) to the aorta bath solution caused L-arginine (L-Arg)-induced relaxation from 1.5 hr after the addition of LPS in de-endothelialized rat aorta pre-contracted with 30 mM KCl. The L-Arg-induced relaxation was prevented by NOS inhibitors. BH4 content also increased from 3 hr after the addition of LPS. mRNAs of iNOS and GTP cyclohydrolase I (GTPCH), a rate-limiting enzyme of BH4 synthesis, were increased from 1.5 hr after addition of LPS. Although the expression of iNOS and GTPCH mRNAs was observed in the media, the expression levels in the media were much lower than those in the adventitia. Ten millimolar 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of GTPCH, strongly reduced L-Arg-induced relaxation, and decreased BH4 content to below the basal level in LPS-treated aorta, whereas 0.5 mM DAHP reduced the LPS-induced increase in BH4 content to the basal level but did not affect L-Arg-induced relaxation. The inhibition of L-Arg-induced relaxation by 10 mM DAHP was overcome by the addition of BH4 (10 microM). These results suggest that although BH4 is essential for NO production from iNOS, the increase in BH4 content above the basal level is not needed for eliciting L-Arg-induced relaxation by the treatment with LPS. Thus, an excess amount of BH4 may be synthesized during NO production by iNOS in LPS-treated rat aorta.  相似文献   

7.
Inducible nitric oxide synthase (NOS II) efficiently catalyzes the oxidation of N-(4-chlorophenyl)N'-hydroxyguanidine 1 by NADPH and O2, with concomitant formation of the corresponding urea and NO. The characteristics of this reaction are very similar to those of the NOS-dependent oxidation of endogenous Nomega-hydroxy-L-arginine (NOHA), i.e., (i) the formation of products resulting from an oxidation of the substrate C=N(OH) bond, the corresponding urea and NO, in a 1:1 molar ratio, (ii) the absolute requirement of the tetrahydrobiopterin (BH4) cofactor for NO formation, and (iii) the strong inhibitory effects of L-arginine (L-arg) and classical inhibitors of NOSs. N-Hydroxyguanidine 1 is not as good a substrate for NOS II as is NOHA (Km = 500 microM versus 15 microM for NOHA). However, it leads to relatively high rates of NO formation which are only 4-fold lower than those obtained with NOHA (Vm = 390 +/- 50 nmol NO min-1 mg protein-1, corresponding roughly to 100 turnovers min-1). Preliminary results indicate that some other N-aryl N'-hydroxyguanidines exhibit a similar behavior. These results show for the first time that simple exogenous compounds may act as NO donors after oxidative activation by NOSs. They also suggest a possible implication of NOSs in the oxidative metabolism of certain classes of xenobiotics.  相似文献   

8.
Luo CX  Zhu XJ  Zhou QG  Wang B  Wang W  Cai HH  Sun YJ  Hu M  Jiang J  Hua Y  Han X  Zhu DY 《Journal of neurochemistry》2007,103(5):1872-1882
Nitric oxide (NO), a free radical with signaling functions in the CNS, is implicated in some developmental processes, including neuronal survival, precursor proliferation, and differentiation. However, neuronal nitric oxide synthase (nNOS) -derived NO and inducible nitric oxide synthase (iNOS) -derived NO play opposite role in regulating neurogenesis in the dentate gyrus after cerebral ischemia. In this study, we show that focal cerebral ischemia reduced nNOS expression and enzymatic activity in the hippocampus. Ischemia-induced cell proliferation in the dentate gyrus was augmented in the null mutant mice lacking nNOS gene (nNOS−/−) and in the rats receiving 7-nitroindazole, a selective nNOS inhibitor, after stroke. Inhibition of nNOS ameliorated ischemic injury, up-regulated iNOS expression, and enzymatic activity in the ischemic hippocampus. Inhibition of nNOS increased and iNOS inhibitor decreased cAMP response element-binding protein phosphorylation in the ipsilateral hippocampus in the late stage of stroke. Moreover, the effects of 7-nitroindazole on neurogenesis after ischemia disappeared in the null mutant mice lacking iNOS gene (iNOS−/−). These results suggest that reduced nNOS is involved in ischemia-induced hippocampal neurogenesis by up-regulating iNOS expression and cAMP response element-binding protein phosphorylation.  相似文献   

9.
10.
The study of the ability of Lactobacillus plantarum 8P-A3 to synthesize nitric oxide (NO) showed that this strain lacks nitrite reductase. However, analysis by the EPR method revealed the presence of nitric oxide synthase activity in this strain. Like mammalian nitric oxide synthase, lactobacillar NO synthase is involved in the formation of nitric oxide from L-arginine. L. plantarum 8P-A3 does not produce NO in the denitrification process. The regulatory role of NO in symbiotic bacteria is emphasixed.  相似文献   

11.
Gorren AC  Bec N  Schrammel A  Werner ER  Lange R  Mayer B 《Biochemistry》2000,39(38):11763-11770
To investigate the role of tetrahydrobiopterin (BH4) in the catalytic mechanism of nitric oxide synthase (NOS), we analyzed the spectral changes following addition of oxygen to the reduced oxygenase domain of endothelial nitric oxide synthase (NOS) in the presence of different pteridines at -30 degrees C. In the presence of N(G)-hydroxy-L-arginine (NOHLA) and BH4 or 5-methyl-BH4, both of which support NO synthesis, the first observable species were mixtures of high-spin ferric NOS (395 nm), ferric NO-heme (439 nm), and the oxyferrous complex (417 nm). With Arg, no clear intermediates could be observed under the same conditions. In the presence of the BH4-competitive inhibitor 7,8-dihydrobiopterin (BH2), intermediates with maxima at 417 and 425 nm were formed in the presence of Arg and NOHLA, respectively. In the presence of 4-amino-BH4, the maxima of the intermediates with Arg and NOHLA were at 431 and 423 nm, respectively. We ascribe all four spectra to oxyferrous heme complexes. The intermediates observed in this study slowly decayed to the high-spin ferric state at -30 degrees C, except for those formed in the presence of 4-amino-BH4, which required warming to room temperature for regeneration of high-spin ferric NOS; with Arg, regeneration remained incomplete. From these observations, we draw several conclusions. (1) BH4 is required for reductive oxygen activation, probably as a transient one-electron donor, not only in the reaction with Arg but also with NOHLA; (2) in the absence of redox-active pterins, reductive oxygen activation does not occur, which results in accumulation of the oxyferrous complex; (3) the spectral properties of the oxyferrous complex are affected by the presence and identity of the substrate; (4) the slow and incomplete formation of high-spin ferric heme with 4-amino-BH4 suggests a structural cause for inhibition of NOS activity by this pteridine.  相似文献   

12.
Hurshman AR  Marletta MA 《Biochemistry》2002,41(10):3439-3456
The heme domain (iNOS(heme)) of inducible nitric oxide synthase (iNOS) was expressed in Escherichia coli and purified to homogeneity. Characterization of the expressed iNOS(heme) shows it to behave in all respects like full-length iNOS. iNOS(heme) is isolated without bound pterin but can be readily reconstituted with (6R)-5,6,7,8-tetrahydro-L-biopterin (H(4)B) or other pterins. The reactivity of pterin-bound and pterin-free iNOS(heme) was examined, using sodium dithionite as the reductant. H(4)B-bound iNOS(heme) catalyzes both steps of the NOS reaction, hydroxylating arginine to N(G)-hydroxy-L-arginine (NHA) and oxidizing NHA to citrulline and *NO. Maximal product formation (0.93 plus minus 0.12 equiv of NHA from arginine and 0.83 plus minus 0.08 equiv of citrulline from NHA) requires the addition of 2 to 2.5 electron equiv. Full reduction of H(4)B-bound iNOS(heme) with dithionite also requires 2 to 2.5 electron equiv. These data together demonstrate that fully reduced H(4)B-bound iNOS(heme) is able to catalyze the formation of 1 equiv of product in the absence of electrons from dithionite. Arginine hydroxylation requires the presence of a bound, redox-active tetrahydropterin; pterin-free iNOS(heme) or iNOS(heme) reconstituted with a redox-inactive analogue, 6(R,S)-methyl-5-deaza-5,6,7,8-tetrahydropterin, did not form NHA under these conditions. H(4)B has an integral role in NHA oxidation as well. Pterin-free iNOS(heme) oxidizes NHA to citrulline, N(delta)-cyanoornithine, an unidentified amino acid, and NO(-). Maximal product formation (0.75 plus minus 0.01 equiv of amino acid products) requires the addition of 2 to 2.5 electron equiv, but reduction of pterin-free iNOS(heme) requires only 1 to 1.5 electron equiv, indicating that both electrons for the oxidation of NHA by pterin-free iNOS(heme) are derived from dithionite. These data provide strong evidence that H(4)B is involved in electron transfer in NOS catalysis.  相似文献   

13.
The study of the ability of Lactobacillus plantarum 8P-A3 to synthesize nitric oxide (NO) showed that this strain lacks nitrite reductase. However, analysis by the EPR method revealed the presence of nitric oxide synthase activity in this strain. Like mammalian nitric oxide synthase, lactobacillar NO synthase is involved in the formation of nitric oxide from L-arginine. L. plantarum 8P-A3 does not produce NO in the course of denitrification process. The regulatory role of NO in symbiotic bacteria is discussed.  相似文献   

14.
A number of cell types express inducible nitric-oxide synthase (NOS2) in response to exogenous insults such as bacterial lipopolysaccharide or proinflammatory cytokines. Although it has been known for some time that the N-terminal end of NOS2 suffers a post-translational modification, its exact identification has remained elusive. Using radioactive fatty acids, we show herein that NOS2 becomes thioacylated at Cys-3 with palmitic acid. Site-directed mutagenesis of this single residue results in the absence of the radiolabel incorporation. Acylation of NOS2 is completely indispensable for intracellular sorting and .NO synthesis. In fact, a C3S mutant of NOS2 is completely inactive and accumulates to intracellular membranes that almost totally co-localize with the Golgi marker beta-cop. Likewise, low concentrations of the palmitoylation blocking agents 2-Br-palmitate or 8-Br-palmitate severely affected the .NO synthesis of both NOS2 induced in muscular myotubes and transfected NOS2. However, unlike endothelial NOS, palmitoylation of inducible NOS is not involved in its targeting to caveolae. We have created 16 NOS2-GFP chimeras to inspect the effect of the neighboring residues of Cys-3 on the degree of palmitoylation. In this regard, the hydrophobic residue Pro-4 and the basic residue Lys-6 seem to be indispensable for palmitoylation. In addition, agents that block the endoplasmic reticulum to Golgi transit such as brefeldin A and monensin drastically reduced NOS2 activity leading to its accumulation in perinuclear areas. In summary, palmitoylation of NOS2 at Cys-3 is required for both its activity and proper intracellular localization.  相似文献   

15.
To understand how heme and (6R)-5,6,7,8-tetrahydro-l-biopterin (H(4)B) participate in nitric-oxide synthesis, we followed ferrous-dioxy heme (Fe(II)O(2)) formation and disappearance, H(4)B radical formation, and Arg hydroxylation during a single catalytic turnover by the inducible nitric-oxide synthase oxygenase domain (iNOSoxy). In all cases, prereduced (ferrous) enzyme was rapidly mixed with an O(2)-containing buffer to start the reaction. A ferrous-dioxy intermediate formed quickly (53 s(-1)) and then decayed with concurrent buildup of ferric iNOSoxy. The buildup of the ferrous-dioxy intermediate preceded both H(4)B radical formation and Arg hydroxylation. However, the rate of ferrous-dioxy decay (12 s(-1)) was equivalent to the rate of H(4)B radical formation (11 s(-1)) and the rate of Arg hydroxylation (9 s(-1)). Practically all bound H(4)B was oxidized to a radical during the reaction and was associated with hydroxylation of 0.6 mol of Arg/mol of heme. In dihydrobiopterin-containing iNOSoxy, ferrous-dioxy decay was much slower and was not associated with Arg hydroxylation. These results establish kinetic and quantitative links among ferrous-dioxy disappearance, H(4)B oxidation, and Arg hydroxylation and suggest a mechanism whereby H(4)B transfers an electron to the ferrous-dioxy intermediate to enable the formation of a heme-based oxidant that rapidly hydroxylates Arg.  相似文献   

16.
Neuronal nitric oxide synthase (NOS I) has been shown to generate nitric oxide (NO*) and superoxide (O(2)* during enzymatic cycling, and the ratio of each free radical is dependent upon the concentration of L-arginine. Using spin trapping and electron paramagnetic resonance spectroscopy, we detected alpha-hydroxyethyl radical (CH(3)*CHOH), produced during the NOS I metabolism of ethanol (EtOH). The generation of CH(3)*CHOH by NOS I was found to be Ca(2+)/calmodulin dependent. Superoxide dismutase prevented CH(3)*CHOH formation in the absence of L-arginine. However, in the presence of L-arginine, the production of CH(3)*CHOH was independent of O(2)* but dependent upon the concentration of L-arginine. Formation of CH(3)*CHOH was inhibited by substituting D-arginine for L-arginine, or inclusion of the NOS inhibitors N(G)-nitro-L-arginine methyl ester, N(G)-monomethyl-L-arginine and the heme blocker, sodium cyanide. The addition of potassium hydrogen persulfate to NOS I, generating the perferryl complex (NOS-[Fe(5+)=O](3+)) in the absence of oxygen and Ca(2+)/calmodulin, and EtOH resulted in the formation of CH(3)*CHOH. NOS I was found to produce the corresponding alpha-hydroxyalkyl radical from 1-propanol and 2-propanol, but not from 2-methyl-2-propanol. Data demonstrated that the perferryl complex of NOS I in the presence of L-arginine was responsible for catalyses of these secondary reactions.  相似文献   

17.
A ferric heme-nitric oxide (NO) complex can build up in mouse inducible nitric oxide synthase (iNOS) during NO synthesis from L-arginine. We investigated its formation kinetics, effect on catalytic activity, dependence on solution NO concentration, and effect on enzyme oxygen response (apparent KmO2). Heme-NO complex formation was biphasic and was linked kinetically to an inhibition of electron flux and catalysis in iNOS. Experiments that utilized a superoxide generating system to scavenge NO showed that the magnitude of heme-NO complex formation directly depended on the NO concentration achieved in the reaction solution. However, a minor portion of heme-NO complex (20%) still formed during NO synthesis even when solution NO was completely scavenged. Formation of the intrinsic heme-NO complex, and the heme-NO complex related to buildup of solution NO, increased the apparent KmO2 of iNOS by 10- and 4-fold, respectively. Together, the data show heme-NO complex buildup in iNOS is due to both intrinsic NO binding and to equilibrium binding of solution NO, with the latter predominating when NO reaches high nanomolar to low micromolar concentrations. This behavior distinguishes iNOS from the other NOS isoforms and indicates a more complex regulation is possible for its activity and oxygen response in biologic settings.  相似文献   

18.
The accumulation and propagation of misfolded proteins in the brain is a pathological hallmark shared by many neurodegenerative diseases, such as the depositions of β-amyloid and hyperphosphorylated tau proteins in Alzheimer''s disease. Initial evidence shows the role of nitric oxide synthases in the development of neurodegenerative diseases. A recent, in an exciting paper (Bourgognon et al. in Proc Natl Acad Sci USA 118, 1–11, 2021. 10.1073/pnas.2009579118) it was shown that the inducible nitric oxide synthase plays an important role in promoting oxidative and nitrergic stress leading to neuroinflammation and consequently neuronal function impairments and decline in synaptic strength in mouse prion disease. In this context, we reviewed the possible mechanisms of nitric oxide synthase in the generation of neurodegenerative diseases.  相似文献   

19.
There is evidence that nitric oxide (NO) formation in adult cardiomyocytes stimulated with lipopolysaccharide (LPS) is not commensurate with iNOS levels. Tetrahydrobiopterin (BH(4)) is a key factor in the stabilization and NO production by iNOS homodimer. Thus we hypothesized that BH(4) is a limiting factor for NO production in adult cardiomyocytes in response to LPS and cytokines (TNF-alpha, IL-1, IFN-gamma alone, or mixed). It was verified that LPS and cytokines induced iNOS expression which did not translate into increased nitrite or [(14)C]citrulline production. This response coincided with defective BH(4) synthesis and low GTP cyclohydrolase activity. Furthermore, supplementation with BH(4) and ascorbate failed to increase iNOS activity. This effect was related to preferential accumulation of BH(2) rather than BH(4) in these cells. Uncoupled iNOS activity in stimulated cells was examined using mitochondrial aconitase activity as an endogenous marker of superoxide anion radical (O(2)(-)) formation, and found not to be significantly inhibited. 2-Hydroxyethidium also was not significantly increased. We conclude that adult cardiomyocytes are an unlikely source of NO and O(2)(-) in inflammatory conditions. This finding adds a new and unexpected layer of complexity to our understanding of the responses of the adult heart to inflammation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号