首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Present research provided an efficient approach to obtain large quantities of active recombinant CI-b1, a Kunitz-type chymotrypsin inhibitor of silkworm, Bombyx mori. The cDNA encoding mature CI-b1 was cloned into pDEST17 vector. Recombinant protein with hexa-histidine tag attached to the N-terminal of CI-b1 was expressed in Escherichia coli Origami B cells. It can be purified to homogeneity via the gel filtration chromatography on a Sephacryl S-200 column followed the affinity chromatography on a Ni-NTA column. The two sequential purification procedures yielded 4.3mg purified (His)(6)-tagged CI-b1 from 200ml of culture medium. Studies on (His)(6)-tagged CI-b1 revealed that three disulfide bonds were formed in the recombinant CI-b1 and the inhibitory properties of recombinant CI-b1 against alpha-chymotrypsin were similar to those of native CI-b1. Recombinant CI-b1 immobilized on Ni-NTA resin was used to detect the interactions occurring between the CI-b1 and its target factors.  相似文献   

2.
A protein having affinity to lipopolysaccharide of Escherichia coli K12 was purified to homogeneity from the hemolymph of Periplaneta americana. This protein, with an average molecular mass of 450 kDa. was a homooligomer of a 28-kDa subunit protein. Comparative studies using lipopolysaccharide molecules of E. coli and Salmonella minnesota suggested that this protein recognizes and binds to a specific carbohydrate structure of E. coli lipopolysaccharide. Ca2+ was required for this protein to bind to lipopolysaccharide, but other divalent cations could not replace Ca2+.  相似文献   

3.
Immulectin, a C-type lectin from the tobacco hornworm, Manduca sexta, was cloned from a larval fat body cDNA library. The immulectin cDNA encodes a 309 residue polypeptide. Immulectin synthesis was induced by injection of killed gram-positive or gram-negative bacteria or yeast. After injection of bacteria, immulectin mRNA appeared in fat body and immulectin protein was detected in hemolymph. Immulectin contains two carbohydrate recognition domains. The carboxyl-terminal carbohydrate recognition domain is most similar (36% identity) to a lipopolysaccharide-binding protein from the American cockroach, Periplaneta americana. It also shares 26-35% identity to carbohydrate recognition domains of various mammalian C-type lectins. Two immulectin isoforms were identified in the hemolymph of bacteria-injected larvae. Recombinant immulectin agglutinated gram-positive and gram-negative bacteria and yeast. Addition of recombinant immulectin to M. sexta plasma stimulated activation of phenol oxidase. A combination of immulectin with lipopolysaccharide from E. coli activated phenol oxidase more rapidly and to a higher level than immulectin alone, whereas lipopolysaccharide by itself had little effect on phenol oxidase activation. Immulectin synthesized in response to bacterial or fungal infection may help to trigger protective responses in M. sexta in a manner similar to mannose-binding protein, a C-type lectin that functions in the mammalian innate immune system.  相似文献   

4.
A lipopolysaccharide-specific lectin, immulectin-2, was isolated from plasma of the tobacco hornworm, Manduca sexta. Immulectin-2 has specificity for xylose, glucose, lipopolysaccharide, and mannan. A cDNA clone encoding immulectin-2 was isolated from an Escherichia coli-induced M. sexta larval fat body cDNA library. The cDNA is 1253 base pairs long, with an open reading frame of 981 base pairs, encoding a 327-residue polypeptide. Immulectin-2 is a member of the C-type lectin superfamily. It consists of two carbohydrate recognition domains, which is similar to the organization of M. sexta immulectin-1. Immulectin-2 was present at a constitutively low level in plasma of control larvae and increased 3-4-fold after injection of Gram-negative bacteria or lipopolysaccharide. Immulectin-2 mRNA was detected in fat body of control larvae, and its level increased dramatically after injection of E. coli. The concentration of immulectin-2 in plasma did not change significantly after injection of Gram-positive bacteria or yeast, even though its mRNA level was increased by these treatments. Compared with immulectin-1, immulectin-2 has a more restricted specificity for binding to Gram-negative bacteria. Immulectin-2 at low physiological concentrations agglutinated E. coli in a calcium-dependent manner. It also bound to immobilized lipopolysaccharide from E. coli. Binding of immulectin-2 to lipopolysaccharide stimulated phenol oxidase activation in plasma. The properties of immulectin-2 are consistent with its function as a pattern recognition receptor for detection and defense against Gram-negative bacterial infection in M. sexta.  相似文献   

5.
A dual specificity for phage T5 adsorption to Escherichia coli cells is shown. The tail fiber-containing phages T5(+) and mutant hd-3 adsorbed rapidly to E. coli F (1.2 x 10(-9) ml min(-1)), whereas the adsorption rate of the tail fiber-less mutants hd-1, hd-2, and hd-4 was low (7 x 10(-11) ml min(-1)). The differences in adsorption rates were due to the particular lipopolysaccharide structure of E. coli F. Phage T4-resistant mutants of E. coli F with an altered lipopolysaccharide structure exhibited similar low adsorption for all phage strains with and without tail fibers. The same held true for E. coli K-12 and B which also differ from E. coli F in their lipopolysaccharide structures. Only the tail fiber-containing phages reversibly bound to isolated lipopolysaccharides of E. coli F. Infection by all phage strains strictly depended on the tonA-coded protein in the outer membrane of E. coli. We assume that the reversible preadsorption by the tail fibers to lipopolysaccharide accelerates infection which occurs via the highly specific irreversible binding of the phage tail to the tonA-coded protein receptor. The difference between rapid and slow adsorption was also revealed by the competition between ferrichrome and T5 for binding to their common tonA-coded receptor in tonB strains of E. coli. Whereas binding of T5(+) to E. coli K-12 and of the tail-fiber-less mutant hd-2 to E. coli F and K-12 was inhibited 50% by about 0.01 muM ferrichrome, adsorption of T5 to E. coli F was inhibited only 40% by even 1,000-fold higher ferrichrome concentrations.  相似文献   

6.
7.
8.
The reversible binding of phage G13, a phi X174-like single-strand DNA phage, to a 3H-labelled nonasaccharide from the lipopolysaccharide of its natural host Escherichia coli C was studied with equilibrium dialysis. The binding constant (Ka) was determined to 1.3 x 10(7) M-1 in Scatchard and Lineweaver-Burk plots. Approximately one saccharide bound per G13 phage particle which suggests that only one of the 12 spikes in each G13 virion was engaged in the phage/receptor saccharide interaction. Equilibrium dialysis inhibition experiments with saccharides from lipopolysaccharides of an isogenic series of Salmonella typhimurium mutants showed that hepta- and pentasaccharides from two G13-sensitive bacteria, i.e., with efficiencies of plating of 0.1-1.0 compared to E. coli C, were efficient inhibitors with Ka-values greater than or equal to 1.2 x 10(7) M-1. The octa- and hexasaccharides from two G13 resistant strains, with efficiency of plating less than or equal to x 10(-4), were either greater than 1000-fold or greater than 15-fold less efficient as inhibitors with Ka-values less than or equal to 8.8 x 10(5) M-1. The results show that phage G13 binds in a specific and reversible way to penta-, hepta-, and nonasaccharides from G13 sensitive bacteria with the specificity residing in the hexose and heptose region of the core lipopolysaccharide.  相似文献   

9.
Many proteins, including antibacterial peptides in the hemolymph, are induced by bacterial infections. We found two bacterially inducible carboxylesterases (CEs) in the hemolymph of the silkworm, Bombyx mori. CEs Est-1 and 2 were induced by lipopolysaccharide injection after 6 hours as well as E. coli infection. We found that bacterially inducible CEs clearly differed from noninducible CEs, including juvenile hormone esterases, in pI values, migration on analytical native PAGE, and inhibitor sensitivity. We are now studying the features and functions of these CEs.  相似文献   

10.
Site-directed mutagenesis of enhanced green fluorescent protein (EGFP) based on rational computational design was performed to create a fluorescence-based biosensor for endotoxin and gram-negative bacteria. EGFP mutants (EGFP(i)) bearing one (G10) or two (G12) strands of endotoxin binding motifs were constructed and expressed in an Escherichia coli host. The EGFP(i) proteins were purified and tested for their efficacy as a novel fluorescent biosensor. After efficient removal of lipopolysaccharide from the E. coli lysates, the binding affinities of the EGFP(i) G10 and G12 to lipid A were established. The K(D) values of 7.16 x 10(-7) M for G10 and 8.15 x 10(-8) M for G12 were achieved. With high affinity being maintained over a wide range of pH and ionic strength, the binding of lipid A/lipopolysaccharide to the EGFP(i) biosensors could be measured as a concentration-dependent fluorescence quenching of the EGFP mutants. The EGFP(i) specifically tagged gram-negative bacteria like E. coli and Pseudomonas aeruginosa, as well as other gram-negative bacteria in contaminated water sampled from the environment. This dual function of the EGFP(i) in detecting both free endotoxin and live gram-negative bacteria forms the basis of the development of a novel fluorescent biosensor.  相似文献   

11.
When Escherichia coli O157:H7 bacteria are added to alfalfa sprouts growing in water, the bacteria bind tightly to the sprouts. In contrast, laboratory K-12 strains of E. coli do not bind to sprouts under similar conditions. The roles of E. coli O157:H7 lipopolysaccharide (LPS), capsular polysaccharide, and exopolysaccharides in binding to sprouts were examined. An LPS mutant had no effect on the binding of the pathogenic strain. Cellulose synthase mutants showed a significant reduction in binding; colanic acid mutants were more severely reduced, and binding by poly-beta-1,6-N-acetylglucosamine (PGA) mutants was barely detectable. The addition of a plasmid carrying a cellulose synthase gene to K-12 strains allowed them to bind to sprouts. A plasmid carrying the Bps biosynthesis genes had only a marginal effect on the binding of K-12 bacteria. However, the introduction of the same plasmid allowed Sinorhizobium meliloti and a nonbinding mutant of Agrobacterium tumefaciens to bind to tomato root segments. These results suggest that although multiple redundant protein adhesins are involved in the binding of E. coli O157:H7 to sprouts, the polysaccharides required for binding are not redundant and each polysaccharide may play a distinct role. PGA, colanic acid, and cellulose were also required for biofilm formation by a K-12 strain on plastic, but not for the binding of E. coli O157:H7 to mammalian cells.  相似文献   

12.
A mouse monoclonal antibody specific for the R3 lipopolysaccharide core type of Escherichia coli was used to determine the core type of E. coli O157:H7 and other non-O157 verotoxin-producing E. coli strains. Lipopolysaccharide extracts from 28 clinical isolates were examined by sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotting and all were found to have the R3 core. None of the core lipopolysaccharide from the strains tested reacted with the control R1 and R2 specific monoclonal antibodies. A common core type between all the verotoxin-producing E. coli strains tested may be significant when considering the immune response to these bacteria, and to the receptor for the VT bacteriophage.  相似文献   

13.
The phagocytosis process of unencapsulated MIAT-negative strains that, although binding very poorly to human polymorphonuclear leukocytes (PMN) at 4 degrees C, are efficiently killed by these cells at 37 degrees C, was studied. At 37 degrees C the number of bacteria bound to the PMN external surface was similar to that observed at 4 degrees C (about 100 bacteria/100 PMN after 60 min); on the contrary the number of internalized bacteria was much higher (from 500 bacteria/100 PMN after 60 min). Interactions between phagocytosis-sensitive Klebsiella pneumoniae strains (PSK) and PMN were then compared with those of two isogenic Escherichia coli strains with and without type 1 fimbriae. Whereas PSK strain binding to blocked PMN was very slow and became significant only after 5-6 h, that of phagocytosis-sensitive fimbriated E. coli was rapid and efficient. Phagocytosis-resistant, non fimbriated E. coli strain bound with an efficiency that, within the first 60 min, was not very different from that of the PSK strains. However, longer incubations led to increases in PSK binding, whereas unfimbriated E. coli remained constant. PSK and fimbriated E. coli strains were efficiently internalized and killed, whereas the unfimbriated E. coli strain was not. It is suggested that PMN can phagocytize unopsonized bacteria through two different mechanisms. By one mechanism, observed with the fimbriated E. coli strain, PMN bind many more bacteria than those they can internalize. By the other, observed with PSK strains, PMN bind only the bacteria they can immediately internalize.  相似文献   

14.
Immune hemolymph was collected from fifth instar larvae and 1-day-old pupae of Heliothis virescens after injection of prepupae with live Enterobacter cloacae. Induction of antibacterial activity against Escherichia coli K12 D31 was 7.5 times greater in pupal than in larval immune hemolymph. Lysozyme activity of immune pupal hemolymph against Micrococcus lysodeikticus was 11 times greater when compared with lysozyme activity of immune larval hemolymph. Early pupal immune response with regard to antibacterial activity was much greater than larval immune response in H. virescens. Normal pupal hemolymph showed an increase in antibacterial activity and lysozyme that was induced during metamorphosis. Antibacterial protein was isolated together with lysozyme by gel filtration chromatography and then separated from lysozyme by sequential electrophoresis with a native acid gel and SDS gel. Molecular mass of antibacterial protein was estimated to be 12 kDa. The N-terminal amino acid sequence of 12-kDa protein was different from those of antibacterial molecules found in other insects and has not been identified before. A sample containing 12-kDa protein was negative for immunoblotting with anti-synthetic cecropin B antibody. We have named the novel 12-kDa antibacterial protein viresin. Viresin showed antibacterial activity against several Gram-negative bacteria including E. cloacae but not against Gram-positive bacteria.  相似文献   

15.
Introduction of the rol genes of Shigella dysenteriae 1 and Escherichia coli K-12 into Shigella flexneri carrier strains expressing the heterologous S. dysenteriae type 1 lipopolysaccharide resulted in the formation of longer chains of S. dysenteriae 1 O antigen. In bacteria producing both homologous and heterologous O antigen, this resulted in a reduction of the masking of heterologous O antigen by homologous lipopolysaccharide and an increased immune response induced by intraperitoneal immunization of mice by recombinant bacteria. The rol genes of S. dysenteriae 1 and E. coli K-12 were sequenced, and their gene products were compared with the S. flexneri Rol protein. The primary sequence of S. flexneri Rol differs from both E. coli K-12 and S. dysenteriae 1 Rol proteins only at positions 267 and 270, which suggests that this region may be responsible for the difference in biological activities.  相似文献   

16.
Strains of Shigella dysenteriae, Shigella flexneri and Shigella boydii express lipopolysaccharides, that enable the serotyping of strains based on their antigenic structures. Certain strains of S. dysenteriae, S. flexneri and S. boydii are known to share epitopes with strains of Escherichia coli ; however, the lipopolysaccharide profiles of the cross-reacting organisms have not been compared by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) lipopolysaccharides profiling. In the present study, type strains of these bacteria were examined using SDS-PAGE/silver staining to compare their respective lipopolysaccharide profiles. Strains of S. dysenteriae, S. boydii and S. flexneri all expressed long-chain lipopolysaccharide, with distinct profile patterns. The majority of strains of Shigella spp., known to cross-react with strains of E. coli , had lipopolysaccharide profiles quite distinct from the respective strain of E. coli . It was concluded that while cross-reacting strains of Shigella spp. and E. coli may express shared lipopolysaccharide epitopes, their lipopolysaccharide structures are not identical.  相似文献   

17.
Endotoxin (lipopolysaccharide (LPS)), a component of Gram-negative bacteria, is among the most potent proinflammatory substances known. The lipid-A region of this molecule initiates the production of multiple host-derived inflammatory mediators, including cytokines (e.g. tumor necrosis factor-alpha (TNFalpha)). It has been a continuous effort to identify methods of interfering with the interaction between enteric LPS and inflammatory cells using natural and synthetic LPS analogs. Some of these LPS analogs (e.g. Rhodobacter spheroides LPS/lipid-A derivatives) are antagonists in human cells but act as potent agonists with cells of other species. Data reported here indicate that structurally novel LPS from symbiotic, nitrogen-fixing bacteria found in association with the root nodules of legumes do not stimulate human monocytes to produce TNFalpha. Furthermore, LPS from one of these symbiotic bacterial species, Rhizobium sp. Sin-1, significantly inhibits the synthesis of TNFalpha by human cells incubated with Escherichia coli LPS. Rhizobium Sin-1 LPS exerts these effects by competing with E. coli LPS for binding to LPS-binding protein and by directly competing with E. coli LPS for binding to human monocytes. Rhizobial lipid-A differs significantly from previously characterized lipid-A analogs in phosphate content, fatty acid acylation patterns, and carbohydrate backbone. These structural differences define the rhizobial lipid-A compounds as a potentially novel class of LPS antagonists that might well serve as therapeutic agents for the treatment of Gram-negative sepsis.  相似文献   

18.
Abstract Lipopolysaccharide of Helicobacter pylori was tested for its mitogenicity and for its ability to stimulate cytokine release in human peripheral blood mononuclear cells (PBMC) of healthy and H. pylori -infected blood donors. Mitogenicity in PBMC induced by H. pylori LPS was similar to that induced by Campylobacter jejuni lipopolysaccharide, but lower than that induced by Escherichia coli lipopolysaccharide in the H. pylori negative blood donor group. Furthermore, H. pylori LPS was able to induce tumour necrosis factor (TNF) interleukin 1 (IL-1) and interleukin 6 (IL-6) secretion of PBMC. Compared with the ability of C. jejuni and E. coli lipopolysaccharides to stimulate cytokine release, H. pylori lipopolysaccharide induced a significantly lower TNF and IL-1 secretion of PBMC than the other tested bacterial lipopolysaccharides. Similar amounts of IL-6 release were obtained by stimulation of PBMC with H. pylori and C. jejuni lipopolysaccharides, whereas a higher IL-6 release was measured by stimulation with E. coli lipopolysaccharide. The results of this study suggest that H. pylori lipopolysaccharide has a lower immunological activity than lipopolysaccharides of other intestinal bacteria. This is probably due to its unusual acylation and phosphorylation pattern of lipid A.  相似文献   

19.
Wu C  Söderhäll K  Söderhäll I 《Proteomics》2011,11(11):2249-2264
To isolate pathogen-associated molecular patterns (PAMPs)-binding molecules, the bacterium, Staphylococcus aureus was used as an affinity matrix to find bacteria-binding proteins in the plasma of the freshwater crayfish, Pacifastacus leniusculus. Two new bacteria-binding ficolin-like proteins (FLPs) were identified by 2-DE and MS analysis. The FLPs have a fibrinogen-related domain (FReD) in their C-terminal and a repeat region in their N-terminal regions with putative structural similarities to the collagen-like domain of vertebrate ficolins and mannose binding lectins (MBLs). Phylogenetic analysis shows that the newly isolated crayfish FLP1 and FLP2 cluster separately from other FReD-containing proteins. A tissue distribution study showed that the mRNA expression of FLP occurred mainly in the hematopoietic tissue (Hpt) and in the hepatopancreas. Recombinant FLPs exhibited agglutination activity of Gram-negative bacteria Escherichia coli and Aeromonas hydrophila in the presence of Ca(2+) . The FLPs could bind to A. hydrophila, E. coli as well as S. aureus as judged by bacteria adsorption. Moreover, the FLPs may help crayfish to clear Gram-negative bacteria, but not Gram-positive bacteria which had been injected into the hemolymph. When Gram-negative bacteria coated with FLPs were incubated with Hpt cells, a lower death rate of the cells was found compared with control treatment. Our results suggest that FLPs function as pattern recognition receptors in the immune response of crayfish.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号