首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We have reconstituted concerted human immunodeficiency virus type 1 (HIV-1) integration with specially designed mini-donor DNA, a supercoiled plasmid acceptor, purified bacterial-derived HIV-1 integrase (IN), and host HMG-I(Y) protein (Hindmarsh, P., Ridky, T., Reeves, R., Andrake, M., Skalka, A. M., and Leis, J. (1999) J. Virol. 73, 2994-3003). Integration in this system is dependent upon the mini donor DNA having IN recognition sequences at both ends and the reaction products have all of the features associated with integration of viral DNA in vivo. Using this system, we explored the relationship between the HIV-1 U3 and U5 IN recognition sequences by analyzing substrates that contain either two U3 or two U5 terminal sequences. Both substrates caused severe defects to integration but with different effects on the mechanism indicating that the U3 and the U5 sequences are both required for concerted DNA integration. We have also used the reconstituted system to compare the mechanism of integration catalyzed by HIV-1 to that of avian sarcoma virus by analyzing the effect of defined mutations introduced into U3 or U5 ends of the respective wild type DNA substrates. Despite sequence differences between avian sarcoma virus and HIV-1 IN and their recognition sequences, the consequences of analogous base pair substitutions at the same relative positions of the respective IN recognition sequences were very similar. This highlights the common mechanism of integration shared by these two different viruses.  相似文献   

2.
We have reconstituted concerted human immunodeficiency virus type 1 (HIV-1) integration in vitro with specially designed mini-donor HIV-1 DNA, a supercoiled plasmid acceptor, purified bacterium-derived HIV-1 integrase (IN), and host HMG protein family members. This system is comparable to one previously described for avian sarcoma virus (ASV) (A. Aiyar et al., J. Virol. 70:3571-3580, 1996) that was stimulated by the presence of HMG-1. Sequence analyses of individual HIV-1 integrants showed loss of 2 bp from the ends of the donor DNA and almost exclusive 5-bp duplications of the acceptor DNA at the site of integration. All of the integrants sequenced were inserted into different sites in the acceptor. These are the features associated with integration of viral DNA in vivo. We have used the ASV and HIV-1 reconstituted systems to compare the mechanism of concerted DNA integration and examine the role of different HMG proteins in the reaction. Of the three HMG proteins examined, HMG-1, HMG-2, and HMG-I(Y), the products formed in the presence of HMG-I(Y) for both systems most closely match those observed in vivo. Further analysis of HMG-I(Y) mutants demonstrates that the stimulation of integration requires an HMG-I(Y) domain involved in DNA binding. While complexes containing HMG-I(Y), ASV IN, and donor DNA can be detected in gel shift experiments, coprecipitation experiments failed to demonstrate stable interactions between HMG-I(Y) and ASV IN or between HMG-I(Y) and HIV-1 IN.  相似文献   

3.
Successful integration of viral genome into a host chromosome depends on interaction between viral integrase and its recognition sequences. We have used a reconstituted concerted human immunodeficiency virus, type 1 (HIV-1), integration system to analyze the role of integrase (IN) recognition sequences in formation of the IN-viral DNA complex capable of concerted integration. HIV-1 integrase was presented with substrates that contained all 4 bases at 8 mismatched positions that define the inverted repeat relationship between U3 and U5 long terminal repeats (LTR) termini and at positions 17-19, which are conserved in the termini. Evidence presented indicates that positions 17-20 of the IN recognition sequences are needed for a concerted DNA integration mechanism. All 4 bases were found at each randomized position in sequenced concerted DNA integrants, although in some instances there were preferences for specific bases. These results indicate that integrase tolerates a significant amount of plasticity as to what constitutes an IN recognition sequence. By having several positions randomized, the concerted integrants were examined for statistically significant relationships between selections of bases at different positions. The results of this analysis show not only relationships between different positions within the same LTR end but also between different positions belonging to opposite DNA termini.  相似文献   

4.
Retrovirus intasomes purified from virus-infected cells contain the linear viral DNA genome and integrase (IN). Intasomes are capable of integrating the DNA termini in a concerted fashion into exogenous target DNA (full site), mimicking integration in vivo. Molecular insights into the organization of avian myeloblastosis virus IN at the viral DNA ends were gained by reconstituting nucleoprotein complexes possessing intasome characteristics. Assembly of IN-4.5-kbp donor complexes capable of efficient full-site integration appears cooperative and is dependent on time, temperature, and protein concentration. DNase I footprint analysis of assembled IN-donor complexes capable of full-site integration shows that wild-type U3 and other donors containing gain-of-function attachment site sequences are specifically protected by IN at low concentrations (<20 nM) with a defined outer boundary mapping ~20 nucleotides from the ends. A donor containing mutations in the attachment site simultaneously eliminated full-site integration and DNase I protection by IN. Coupling of wild-type U5 ends with wild-type U3 ends for full-site integration shows binding by IN at low concentrations probably occurs only at the very terminal nucleotides (<10 bp) on U5. The results suggest that assembly requires a defined number of avian IN subunits at each viral DNA end. Among several possibilities, IN may bind asymmetrically to the U3 and U5 ends for full-site integration in vitro.  相似文献   

5.
In the initial step of integration, retroviral integrase (IN) introduces precise nicks in the degenerate, short inverted repeats at the ends of linear viral DNA. The scissile phosphodiester bond is located immediately 3' of a highly conserved CA/GT dinucleotide, usually 2 bp from the ends. These nicks create new recessed 3'-OH viral DNA ends that are required for joining to host cell DNA. Previous studies have indicated that unpairing, "fraying," of the viral DNA ends by IN contributes to end recognition or catalysis. Here, we report that end fraying can be detected independently of catalysis with both avian sarcoma virus (ASV) and human immunodeficiency virus type 1 (HIV-1) IN proteins by use of fluorescence resonance energy transfer (FRET). The results were indicative of an IN-induced intramolecular conformational change in the viral DNA ends (cis FRET). Fraying activity is tightly coupled to the DNA binding capabilities of these enzymes, as follows: an inhibitor effective against both IN proteins was shown to block ASV IN DNA binding and end fraying, with similar dose responses; ASV IN substitutions that reduced DNA binding also reduced end fraying activity; and HIV-1 IN DNA binding and end fraying were both undetectable in the absence of a metal cofactor. Consistent with our previous results, end fraying is sequence-independent, suggesting that the DNA terminus per se is a major structural determinant for recognition. We conclude that frayed ends represent a functional intermediate in which DNA termini can be sampled for suitability for endonucleolytic processing.  相似文献   

6.
Integration of retroviral DNA into the host cell genome requires the interaction of retroviral integrase (IN) protein with the outer ends of both viral long terminal repeats (LTRs) to remove two nucleotides from the 3' ends (3' processing) and to join the 3' ends to newly created 5' ends in target DNA (strand transfer). We have purified the IN protein of human immunodeficiency virus type 1 (HIV-1) after production in Saccharomyces cerevisiae and found it to have many of the properties described for retroviral IN proteins. The protein performs both 3' processing and strand transfer reactions by using HIV-1 or HIV-2 attachment (att) site oligonucleotides. A highly conserved CA dinucleotide adjacent to the 3' processing site of HIV-1 is important for both the 3' processing and strand transfer reactions; however, it is not sufficient for full IN activity, since alteration of nucleotide sequences internal to the HIV-1 U5 CA also impairs IN function, and Moloney murine leukemia virus att site oligonucleotides are poor substrates for HIV-1 IN. When HIV-1 att sequences are positioned internally in an LTR-LTR circle junction substrate, HIV-1 IN fails to cleave the substrate preferentially at positions coinciding with correct 3' processing, implying a requirement for positioning att sites near DNA ends. The 2 bp normally located beyond the 3' CA in linear DNA are not essential for in vitro integration, since mutant oligonucleotides with single-stranded 3' or 5' extensions or with no residues beyond the CA dinucleotide are efficiently used. Selection of target sites is nonrandom when att site oligonucleotides are joined to each other in vitro. We modified an in vitro assay to distinguish oligonucleotides serving as the substrate for 3' processing and as the target for strand transfer. The modified assay demonstrates that nonrandom usage of target sites is dependent on the target oligonucleotide sequence and independent of the oligonucleotide used as the substrate for 3' processing.  相似文献   

7.
8.
A macromolecular nucleoprotein complex in retrovirus-infected cells, termed the preintegration complex, is responsible for the concerted integration of linear viral DNA genome into host chromosomes. Isolation of sufficient quantities of the cytoplasmic preintegration complexes for biochemical and biophysical analysis is difficult. We investigated the architecture of HIV-1 nucleoprotein complexes involved in the concerted integration pathway in vitro. HIV-1 integrase (IN) non-covalently juxtaposes two viral DNA termini forming the synaptic complex, a transient intermediate in the integration pathway, and shares properties associated with the preintegration complex. IN slowly processes two nucleotides from the 3′ OH ends and performs the concerted insertion of two viral DNA ends into target DNA. IN remains associated with the concerted integration product, termed the strand transfer complex. The synaptic complex and strand transfer complex can be isolated by native agarose gel electrophoresis. In-gel fluorescence resonance energy transfer measurements demonstrated that the energy transfer efficiencies between the juxtaposed Cy3 and Cy5 5′-end labeled viral DNA ends in the synaptic complex (0.68 ± 0.09) was significantly different from that observed in the strand transfer complex (0.07 ± 0.02). The calculated distances were 46 ± 3 Å and 83 ± 5 Å, respectively. DNaseI footprint analysis of the complexes revealed that IN protects U5 and U3 DNA sequences up to ∼ 32 bp from the end, suggesting two IN dimers were bound per terminus. Enhanced DNaseI cleavages were observed at nucleotide positions 6 and 9 from the terminus on U3 but not on U5, suggesting independent assembly events. Protein-protein cross-linking of IN within these complexes revealed the presence of dimers, tetramers, and a larger multimer (> 120 kDa). Our results suggest a new model where two IN dimers individually assemble on U3 and U5 ends before the non-covalent juxtaposition of two viral DNA ends, producing the synaptic complex.  相似文献   

9.
M Katzman  R A Katz  A M Skalka    J Leis 《Journal of virology》1989,63(12):5319-5327
The purified integration protein (IN) of avian myeloblastosis virus is shown to nick double-stranded oligodeoxynucleotide substrates that mimic the ends of the linear form of viral DNA. In the presence of Mg2+, nicks are created 2 nucleotides from the 3' OH ends of both the U5 plus strand and the U3 minus strand. Similar cleavage is observed in the presence of Mn2+ but only when the extent of the reaction is limited. Neither the complementary strands nor sequences representing the termini of human immunodeficiency virus type 1 DNA were cleaved at analogous positions. Analysis of a series of substrates containing U5 base substitutions has defined the sequence requirements for site-selective nicking; nucleotides near the cleavage site are most critical for activity. The minimum substrate size required to demonstrate significant activity corresponds to the nearly perfect 15-base terminal inverted repeat. This in vitro activity of IN thus produces viral DNA ends that are joined to host DNA in vivo and corresponds to an expected early step in the integrative recombination reaction. These results provide the first enzymatic support using purified retroviral proteins for a linear DNA precursor to the integrated provirus.  相似文献   

10.
11.
Concerted integration of retrovirus DNA termini into the host chromosome in vivo requires specific interactions between the cis-acting attachment (att) sites at the viral termini and the viral integrase (IN) in trans. In this study, reconstruction experiments with purified avian myeloblastosis virus (AMV) IN and retrovirus-like donor substrates containing wild-type and mutant termini were performed to map the internal att DNA sequence requirements for concerted integration, here termed full-site integration. The avian retrovirus mutations were modeled after internal att site mutations studied at the in vivo level with human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MLV). Systematic overlapping 4-bp deletions starting at nucleotide positions 7, 8, and 9 in the U3 terminus had a decreasing detrimental gradient effect on full-site integration, while more internal 4-bp deletions had little or no effect. This decreasing detrimental gradient effect was measured by the ability of mutant U3 ends to interact with wild-type U3 ends for full-site integration in trans. Modification of the highly conserved C at position 7 on the catalytic strand to either A or T resulted in the same severe decrease in full-site integration as the 4-bp deletion starting at this position. These studies suggest that nucleotide position 7 is crucial for interactions near the active site of IN for integration activity and for communication in trans between ends bound by IN for full-site integration. The ability of AMV IN to interact with internal att sequences to mediate full-site integration in vitro is similar to the internal att site requirements observed with MLV and HIV-1 in vivo and with their preintegration complexes in vitro.  相似文献   

12.
S Basu  H E Varmus 《Journal of virology》1990,64(11):5617-5625
The integration protein (IN) of Moloney murine leukemia virus (MuLV), purified after being produced in yeast cells, has been analyzed for its ability to bind its putative viral substrates, the att sites. An electrophoretic mobility shift assay revealed that the Moloney MuLV IN protein binds synthetic oligonucleotides containing att sequences, with specificity towards its cognate (MuLV) sequences. The terminal 13 base pairs, which are identical at both ends of viral DNA, are sufficient for binding if present at the ends of oligonucleotide duplexes in the same orientation as in linear viral DNA. However, only weak binding was observed when the same sequences were positioned within a substrate in a manner simulating att junctions in circular viral DNA with two long terminal repeats. Binding to att sites in oligonucleotides simulating linear viral DNA was dependent on the presence of the highly conserved CA residues preceding the site for 3' processing (an IN-dependent reaction that removes two nucleotides from the 3' ends of linear viral DNA); mutation of CA to TG abolished binding, and a CA to TA change reduced affinity by at least 20-fold. Removal of either the terminal two base pairs from both ends of the oligonucleotide duplex or the terminal two nucleotides from the 3' ends of each strand did not affect binding. The removal of three 3' terminal nucleotides, however, abolished binding, suggesting an essential role for the A residue immediately upstream of the 3' processing site in the binding reaction. These results help define the sequence requirements for att site recognition by IN, explain the conservation of the subterminal CA dinucleotide, and provide a simple assay for sequence-specific IN activity.  相似文献   

13.
Retrovirus preintegration complexes (PIC) in virus-infected cells contain the linear viral DNA genome (approximately 10 kbp), viral proteins including integrase (IN), and cellular proteins. After transport of the PIC into the nucleus, IN catalyzes the concerted insertion of the two viral DNA ends into the host chromosome. This successful insertion process is termed "full-site integration." Reconstitution of nucleoprotein complexes using recombinant human immunodeficiency virus type 1 (HIV-1) IN and model viral DNA donor substrates (approximately 0.30 to 0.48 kbp in length) that are capable of catalyzing efficient full-site integration has proven difficult. Many of the products are half-site integration reactions where either IN inserts only one end of the viral donor substrate into a circular DNA target or into other donors. In this report, we have purified recombinant HIV-1 IN at pH 6.8 in the presence of MgSO4 that performed full-site integration nearly as efficiently as HIV-1 PIC. The size of the viral DNA substrate was significantly increased to 4.1 kbp, thus allowing for the number of viral DNA ends and the concentrations of IN in the reaction mixtures to be decreased by a factor of approximately 10. In a typical reaction at 37 degrees C, recombinant HIV-1 IN at 5 to 10 nM incorporated 30 to 40% of the input DNA donor into full-site integration products. The synthesis of full-site products continued up to approximately 2 h, comparable to incubation times used with HIV-1 PIC. Approximately 5% of the input donor was incorporated into the circular target producing half-site products with no significant quantities of other integration products produced. DNA sequence analysis of the viral DNA-target junctions derived from wild-type U3 and U5 coupled reactions showed an approximately 70% fidelity for the HIV-1 5-bp host site duplications. Recombinant HIV-1 IN successfully utilized a mutant U5 end containing additional nucleotide extensions for full-site integration demonstrating that IN worked properly under nonideal active substrate conditions. The fidelity of the 5-bp host site duplications was also high with these coupled mutant U5 and wild-type U3 donor ends. These studies suggest that recombinant HIV-1 IN is at least as capable as native IN in virus particles and approaching that observed with HIV-1 PIC for catalyzing full-site integration.  相似文献   

14.
The sequences required for integration of retroviral DNA have been analyzed in vitro. However, the in vitro experiments do not agree on which sequences are required for integration: for example, whether or not the conserved CA dinucleotide in the 3′ end of the viral DNA is required for normal integration. At least a portion of the problem is due to differences in the experimental conditions used in the in vitro assays. To avoid the issue of what experimental conditions to use, we took an in vivo approach. We made mutations in the 5′ end of the U3 sequence of the Rous sarcoma virus (RSV)-derived vector RSVP(A)Z. We present evidence that, in RSV, the CA dinucleotide in the 5′ end of U3 is not essential for appropriate integration. This result differs from the results seen with mutations in the U5 end, where the CA appears to be essential for proper integration in vivo. In addition, based on the structure of circular viral DNAs smaller than the full-length viral genome, our results suggest that there is little, if any, integrase-mediated autointegration of RSV linear DNA in vivo.  相似文献   

15.
The integration of linear retrovirus DNA by the viral integrase (IN) into the host chromosome occurs by a concerted mechanism (full-site reaction). IN purified from avian myeloblastosis virus and using retrovirus-like DNA restriction fragments (487 bp in length) as donors and circular DNA (pGEM-3) as the target can efficiently catalyze that reaction. Nonionic detergent lysates of purified human immunodeficiency virus type 1 (HIV-1) virions were also capable of catalyzing the concerted integration reaction. The donor substrates were restriction fragments (469 bp) containing either U3-U5 (H-2 donor) or U5-U5 (H-5 donor) long terminal repeat sequences at their ends. As was shown previously with bacterially expressed HIV-1 IN, the U5 terminus of H-2 was preferred over the U3 terminus by virion-associated IN. The reactions involving two donors per circular target by HIV-1 IN preferred Mg2+ over Mn2+. Both metal ions were equally effective for the circular half-site reaction involving only one donor molecule. The linear 3.8-kbp recombinant products produced from two donor insertions into pGEM were genetically selected, and the donor-target junctions of individual recombinants were sequenced. A total of 55% of the 87 sequenced recombinants had host site duplications of between 5 and 7 bp, with the HIV-1 5-bp-specific duplication predominating. The other recombinants that migrated at the linear 3.8-kbp position were mainly small deletions that were grouped into four sets of 17, 27, 40, and 47 bp, each having a periodicity mimicking a turn of the DNA helix. Aprotic solvents (dimethyl sulfoxide and 1,4-dioxane) enhanced both the half-site and the linear 3.8-kbp strand transfer reactions which favored low-salt conditions (30 mM NaCl). The order of addition of the donor and target during preincubation with HIV-1 IN on ice did not affect the quantity of linear 3.8-kbp recombinants relative to that of the circular half-site products that were produced; only the quantity of donor-donor versus donor-target recombinants was affected. The presence of Mg2+ in the preincubation mixtures containing donor and target substrates was not necessary for the stability of preintegration complexes on ice or at 22 degrees C. Comparisons of the avian and HIV-1 concerted integration reactions are discussed.  相似文献   

16.
A tetramer model for HIV-1 integrase (IN) with DNA representing 20 bp of the U3 and U5 long terminal repeats (LTR) termini was assembled using structural and biochemical data and molecular dynamics simulations. It predicted amino acid residues on the enzyme surface that can interact with the LTR termini. A separate structural alignment of HIV-1, simian sarcoma virus (SIV), and avian sarcoma virus (ASV) INs predicted which of these residues were unique. To determine whether these residues were responsible for specific recognition of the LTR termini, the amino acids from ASV IN were substituted into the structurally equivalent positions of HIV-1 IN, and the ability of the chimeras to 3 ' process U5 HIV-1 or ASV duplex oligos was determined. This analysis demonstrated that there are multiple amino acid contacts with the LTRs and that substitution of ASV IN amino acids at many of the analogous positions in HIV-1 IN conferred partial ability to cleave ASV substrates with a concomitant loss in the ability to cleave the homologous HIV-1 substrate. HIV-1 IN residues that changed specificity include Val(72), Ser(153), Lys(160)-Ile(161), Gly(163)-Val(165), and His(171)-Leu(172). Because a chimera that combines several of these substitutions showed a specificity of cleavage of the U5 ASV substrate closer to wild type ASV IN compared with chimeras with individual amino acid substitutions, it appears that the sum of the IN interactions with the LTRs determines the specificity. Finally, residues Ser(153) and Val(72) in HIV-1 IN are among those that change in enzymes that develop resistance to naphthyridine carboxamide- and diketo acid-related inhibitors in cells. Thus, amino acid residues involved in recognition of the LTRs are among these positions that change in development of drug resistance.  相似文献   

17.
Retroviral integrase (IN) recognizes linear viral DNA ends and introduces nicks adjacent to a highly conserved CA dinucleotide usually located two base pairs from the 3'-ends of viral DNA (the "processing" reaction). In a second step, the same IN active site catalyzes the insertion of these ends into host DNA (the "joining" reaction). Both DNA sequence and DNA structure contribute to specific recognition of viral DNA ends by IN. Here we used potassium permanganate modification to show that the avian sarcoma virus IN catalytic domain is able to distort viral DNA ends in vitro. This distortion activity is consistent with both unpairing and unstacking of the three terminal base pairs, including the processing site adjacent to the conserved CA. Furthermore, the introduction of mismatch mutations that destabilize the viral DNA ends were found to stimulate the IN processing reaction as well as IN-mediated distortion. End-distortion activity was also observed with mutant or heterologous DNA substrates. However, further analyses showed that using Mn(2+) as a cofactor, processing site specificity of these substrates was also maintained. Our results support a model whereby unpairing and unstacking of the terminal base pairs is a required step in the processing reaction. Furthermore, these results are consistent with our previous observations indicating that unpairing of target DNA promotes the joining reaction.  相似文献   

18.
The retroviral integrase (IN) carries out the integration of the viral DNA into the host genome. Both IN and the DNA sequences at the viral long-terminal repeat (LTR) are required for the integration function. In this report, a series of minor groove binding hairpin polyamides targeting sequences within terminal inverted repeats of the Moloney murine leukemia virus (M-MuLV) LTR were synthesized, and their effects on integration were analyzed. Using cell-free in vitro integration assays, polyamides targeting the conserved CA dinucleotide with cognate sites closest to the terminal base pairs were effective at blocking 3' processing but not strand transfer. Polyamides which efficiently inhibited 3' processing and strand transfer targeted the LTR sequences through position 9. Polyamides that inhibited integration were effective at nanomolar concentrations and showed subnanomolar affinity for their cognate LTR sites. These studies highlight the role of minor groove interactions within the LTR termini for retroviral integration.  相似文献   

19.
Full-site integration by recombinant wild-type and mutant simian immunodeficiency virus (SIV) integrase (IN) was investigated with linear retrovirus-like DNA (469 bp) as a donor substrate and circular DNA (2,867 bp) as a target substrate. Under optimized conditions, recombinant SIV IN produced donor-target products consistent with full-site (two donor ends) and half-site (one donor end) reactions with equivalent frequency. Restriction enzyme analysis of the 3.8-kbp full-site reaction products confirmed the concerted insertion of two termini from separate donors into a single target molecule. Donor ends carrying the viral U5 termini were preferred over U3 termini for producing both half-site and full-site products. Bacterial genetic selection was used to isolate individual donor-target recombinants, and the donor-target junctions of the cloned products were characterized by sequencing. Analysis of 149 recombinants demonstrated approximately 84% fidelity for the appropriate simian retrovirus 5-bp host duplication. As seen previously in similar reactions with human immunodeficiency virus type 1 (HIV-1) IN from lysed virions, approximately 8% of the donor-target recombinants generated with recombinant SIV IN incurred specific 17- to 18- or 27- to 29-bp deletions. The efficiency and fidelity of the full-site integration reaction mediated by the purified, recombinant SIV IN is comparable to that of HIV-1 IN from virions. These observations suggest that a purified recombinant lentivirus IN is itself sufficient to recapitulate the full-site integration process.  相似文献   

20.
Retrovirus preintegration complexes (PIC) purified from virus-infected cells are competent for efficient concerted integration of the linear viral DNA ends by integrase (IN) into target DNA (full-site integration). In this report, we have shown that the assembled complexes (intasomes) formed in vitro with linear 3.6-kbp DNA donors possessing 3'-OH-recessed attachment (att) site sequences and avian myeloblastosis virus IN (4 nm) were as competent for full-site integration as isolated retrovirus PIC. The att sites on DNA with 3'-OH-recessed ends were protected by IN in assembled intasomes from DNase I digestion up to approximately 20 bp from the terminus. Several DNA donors containing either normal blunt-ended att sites or different end mutations did not allow assembly of complexes that exhibit the approximately 20-bp DNase I footprint at 14 degrees C. At 50 and 100 mm NaCl, the approximately 20-bp DNase I footprints were produced with wild type (wt) U3 and gain-of-function att site donors for full-site integration as previously observed at 320 mm NaCl. Although the wt U5 att site donors were fully competent for full-site integration at 37 degrees C, the approximately 20-bp DNase I footprint was not observed under a variety of assembly conditions including low NaCl concentrations at 14 degrees C. Under suboptimal assembly conditions for intasomes using U3 att DNA, DNase I probing demonstrated an enhanced cleavage site 9 bp from the end of U3 suggesting that a transient structural intasome intermediate was identified. Using a single nucleotide change at position 7 from the end and a series of small size deletions of wt U3 att site sequences, we determined that sequences upstream of the 11th nucleotide position were not required by IN to produce the approximately 20-bp DNase I footprint and full-site integration. The results suggest the structural organization of IN at the att sites in reconstituted intasomes was similar to that observed in PIC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号