首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of H2O2 with mixed-valence and fully reduced cytochrome c oxidase was investigated by photolysis of fully reduced and mixed-valence carboxy-cytochrome c oxidase in the presence of H2O2 under anaerobic conditions. The results showed that H2O2 reacted rapidly (k = (2.5-3.1) X 10(4) M-1 X s-1) with both enzyme species. With the mixed-valence enzyme, the fully oxidised enzyme was reformed. On the time-scale of our experiments, no spectroscopically detectable intermediate was observed. This demonstrates that mixed-valence cytochrome c oxidase is able to use H2O2 as a two-electron acceptor, suggesting that cytochrome c oxidase may under suitable conditions act as a peroxidase. Upon reaction of H2O2 with the fully reduced enzyme, cytochrome a was oxidised before cytochrome a3. From this observation it was possible to estimate that the rate of electron transfer from cytochrome a to a3 is about 0.5-5 s-1.  相似文献   

2.
The oxidation of reduced cytochrome c oxidase by hydrogen peroxide was investigated with stopped-flow methods. It was reported by us previously (A.C.F. Gorren, H. Dekker and R. Wever (1986) Biochim. Biophys. Acta 852, 81-92) that at low H2O2 concentrations cytochrome a is oxidised simultaneously with cytochrome a3, but that at higher H2O2 concentrations the oxidation of cytochrome a is slower than that of cytochrome a3. We now report that for high peroxide concentrations (10-45 mM) the oxidation rate of cytochrome a increased linearly with the concentration of H2O2 (k = 700 M-1.S-1). Upon extrapolation to zero H2O2 concentration an intercept with a value of 16 s-1 (at 20 degrees C and pH 7.4) was found. A reaction sequence is described to explain these results; according to this model the rate constant (16 S-1) at zero H2O2 concentration represents the true value of the rate of electron transfer from cytochrome a to cytochrome a3 when the a3-CuB site is oxidised and unligated. However, when a complex of hydrogen peroxide with oxidised cytochrome a3 is formed, this rate is strongly enhanced. The slope (700 M-1.S-1) would then represent the rate of cytochrome a3(3+)-H2O2 complex formation. From experiments in which the pH was varied, we conclude that the reaction of H2O2 with cytochrome a3(2+) is independent of pH, whereas the electron-transfer rate from cytochrome a to cytochrome a3 gradually decreases with increasing pH. From the temperature dependence we could calculate values of 23 kJ.mol-1 and 45 kJ.mol-1 for the activation energies of the oxidations by H2O2 of cytochrome a3(2+) and cytochrome a2+, respectively. The similarity of the values that were obtained for cytochrome a oxidation both with H2O2 and with O2 as the electron acceptor suggests that the reactions share the same mechanism. In 2H2O the reactions studied decreased in rate. For the reaction of 2H2O2 with reduced cytochrome a3 in 2H2O, a small effect was found (15% decrease in rate constant). However, the internal electron-transfer rate from cytochrome a to cytochrome a3 decreased by 50%, Our results suggest that the internal electron transfer is associated with proton translocation.  相似文献   

3.
The reaction between reduced Pseudomonas cytochrome c551 and cytochrome oxidase with two inorganic metal complexes, Co(phen)3(3+) and Mn(CyDTA)(H2O)-, has been followed by stopped-flow spectrophotometry. The electron transfer to cytochrome c551 by both reactants is a simple process, characterized by the following second-order rate constant: k = 4.8 X 10(4) M-1 sec-1 in the case of Co(phen)3(3+) and k = 2.3 X 10(4) M-1 sec-1 in the case of Mn(CyDTA)(H2O)-. The reaction of the c-heme of the oxidase with both metal complexes is somewhat heterogeneous, the overall process being characterized by the following second-order rate constants: k = 1.7 X 10(3) M-1 sec-1 with Co(phen)3(3+) and k = 4.3 X 10(4) M-1 sec-1 with Mn(CyDTA)(H2O)- as oxidants; under CO (which binds to the d1-heme) the former constant increases by a factor of 2, while the latter does not change significantly. The oxidation of the d1-heme of the oxidase by Co(phen)3(3+) occurs via intramolecular electron transfer to the c-heme, a direct bimolecular transfer from the complex being operative only at high metal complex concentrations; when Mn(CyDTA)(H2O)- is the oxidant, the bimolecular oxidation of the d1-heme competes successfully with the intramolecular electron transfer.  相似文献   

4.
The binding of CO to ascorbate-reduced Pseudomonas cytochrome oxidase was investigated by static-titration, stopped-flow and flash-photolytic techniques. Static-titration data indicated that the binding process was non-stoicheiometric, with a Hill number of 1.44. Stopped-flow kinetics obtained on the binding of CO to reduced Pseudomonas cytochrome oxidase were biphasic in form; the faster rate exhibited a linear dependence on CO concentration with a second-order rate constant of 2 X 10(4) M-1-s-1, whereas the slower reaction rapidly reached a pseudo-first-order rate limit at approx. 1s-1. The relative proportions of the two phases observed in stopped-flow experiments also showed a dependency on CO concentration, the slower phase increasing as the CO concentration decreased. The kinetics of CO recombination after flash-photolytic dissociation of the reduced Pseudomonas cytochrome oxidase-CO complex were also biphasic in character, both phases showing a linear pseudo-first-order rate dependence on CO concentration. The second-order rate constants were determined as 3.6 X 10(4)M-1-s-1 and 1.6 X 10(4)M-1-s-1 respectively. Again the relative proportions of the two phases varied with CO concentration, the slower phase predominating at low CO concentrations. CO dissociation from the enzyme-CO complex measured in the presence of O2 and NO indicated the presence of two rates, of the order of 0.03s-1 and 0.15s-1. When sodium dithionite was used as a reducing agent for the Pseudomonas cytochrome oxidase, the CO-combination kinetics observed by both stopped flow and flash photolysis were extremely complex and not able to be simply analysed.  相似文献   

5.
The site-specific chemical modification of horse heart cytochrome c at Lys-13 and -72 using 4-chloro-3,5-dinitrobenzoic acid (CDNB) increases the electron self-exchange rate of the protein. In the presence of 0.24 M cacodylate (pH* 7.0) the electron self-exchange rate constants, kex, measured by a 1H NMR saturation transfer method at 300 K, are 600, 6 X 10(3) and 6 X 10(4) M-1 X s-1 for native, CDNP-K13 and CDNP-K72 cytochromes c respectively. Repulsive electrostatic interactions, which inhibit cytochrome c electron self-exchange, are differentially affected by modification. Measurements of 1H NMR line broadening observed with partially oxidised samples of native cytochrome c show that ATP and the redox inert multivalent anion Co(CN)3-6 catalyse electron self-exchange. At saturation a limiting value of approximately 1.4 X 10(5) M-1 X s-1 is observed for both anions.  相似文献   

6.
Stopped-flow kinetics were made of the reaction between ascorbate-reduced Pseudomonas cytochrome oxidase and potassium ferricyanide under both N2 and CO atmospheres. Under N2 three kinetic processes were observed, two being dependent on ferricyanide concentration, with second-order rate constants of 9.6 X 10(4)M-1.s-1 and 1.5 X 10(4)M-1.s-1, whereas the other was concentration-independent, with a first-order rate constant of 0.17 +/- 0.03s-1. Measurements of their kinetic difference spectra have allowed the fastest and second-fastest phases of the reaction to be assigned to direct bimolecular reactions of ferricyanide with the haem c and haem d, moieties of the enzyme respectively. Under CO, the second-order rate constant for the reaction of the haem c was, at 1.3 X 10(5)M-1.s-1, slightly enhanced over the rate in a N2 atmosphere, but the reaction velocity of the haem d1 component was greatly decreased, being apparently limited to that of the rates of CO dissociation from the molecule (0.15s-1 and 0.03s-1). The results are compared with those obtained during a previous study of the reaction of reduced Pseudomonas cytochrome oxidase with oxidized azurin.  相似文献   

7.
The reaction of Neurospora crassa cytochrome c oxidase with CO was studied by flash-photolysis and rapid-mixing experiments, leading to the determination of the association and dissociation rate constants (7 X 10(4) M-1 X s-1 and 0.02s-1 respectively). Pre-steady-state kinetic investigations of the catalytic properties of the enzyme showed that under proper conditions Neurospora cytochrome c oxidase can be 'pulsed', i.e. activated, like the mammalian enzyme. The 'pulsed' species is spectroscopically different from the 'resting' one, and the decay into the 'resting' state is fast (t1/2 approx. 3 min).  相似文献   

8.
p-Cresol methylhydroxylase, a heterodimer consisting of one flavoprotein subunit and one cytochrome c subunit, may be resolved into its subunits, and the holoenzyme may then be fully reconstituted from the pure subunits. In the present study we have characterized the reduction kinetics of the intact enzyme and its subunits, by using exogenous 5-deazariboflavin semiquinone radical generated in the presence of EDTA by the laser-flash-photolysis technique. Under anaerobic conditions the 5-deazariboflavin semiquinone radical reacts rapidly with the native enzyme with a rate constant approaching that of a diffusion-controlled reaction (k = 2.8 X 10(9) M-1 X s-1). Time-resolved difference spectra at pH 7.6 indicate that both flavin and haem are reduced initially by the deazariboflavin semiquinone radical, followed by an additional slower intramolecular electron transfer (k = 220 s-1) from the endogenous neutral flavin semiquinone radical to the oxidized haem moiety of the native enzyme. During the steady-state photochemical titration of the native enzyme at pH 7.6 with deazariboflavin semiquinone radical generated by light-irradiation the haem appeared to be reduced before the protein-bound flavin and was followed by the formation of the protein-bound anionic flavin radical. This result suggests that the redox potential of the haem is higher than that of the flavin, and that deprotonation of the flavin neutral radical occurred during the photochemical titration. Reduction kinetics of the flavoprotein and cytochrome subunits were also investigated by laser-flash photolysis. The protein-bound flavin of the isolated flavin subunit was reduced rapidly by the deazariboflavin semiquinone radical (k = 2.2 X 10(9) M-1 X s-1), as was the haem of the pure cytochrome c subunit (k = 3.7 X 10(9) M-1 X s-1). Flash-induced difference spectra obtained for the flavoprotein and cytochrome subunits at pH 7.6 were consistent with the formation of neutral flavin semiquinone radical and reduced haem, respectively. Investigation of the kinetic properties of the neutral flavin semiquinone radical of the flavoprotein subunit at pH 7.6 and at longer times (up to 5s) were consistent with a slow first-order deprotonation reaction (k = 1 s-1) of the neutral radical to its anionic form.  相似文献   

9.
The influence of the detergent environment upon individual electron-transfer rates of cytochrome c oxidase was investigated by stopped-flow spectrophotometry. The effects of three detergents were studied: lauryl maltoside, which supports a high turnover number (TN = 350 s-1), n-dodecyl octaethylene glycol monoether (C12E8), which supports an intermediate TN (150 s-1), and Triton X-100 in which oxidase is nearly inactive (TN = 2-3 s-1). Under limited turnover conditions (cytochrome c:cytochrome c oxidase ratio = 1:1 to 8:1), the rate of oxidation of cytochrome c was measured and compared with the fast reduction of cytochrome a and its relatively slow reoxidation. Two reducing equivalents of cytochrome c were rapidly oxidized in a burst phase; the remaining two to six equivalents were oxidized more slowly, concurrent with the reoxidation of cytochrome a; i.e., the percent reduced cytochrome a reflects the percent reduced cytochrome c. With the resting enzyme, the bimolecular reaction between reduced cytochrome c and cytochrome a was rapid, was insensitive to the detergent environment, and was not the rate-limiting step in the presence of any detergent. The rate of internal electron transfer from cytochrome a to cytochrome a3 in the resting enzyme was slow and only slightly affected by the detergent environment: 1.0-1.1 s-1 in Triton X-100, 5-7 s-1 in C12E8, and 5-12 s-1 in lauryl maltoside. With the pulsed enzyme, the intramolecular electron transfer between cytochrome a and cytochrome a3 increased 4-5-fold in the lauryl maltoside enzyme but did not increase in the Triton X-100 enzyme (intermediate values were obtained with the C12E8 enzyme). We conclude that cytochrome c oxidase acquires the pulsed conformation only in those detergents that support high TN's, e.g., lauryl maltoside and C12E8, but it is locked in the resting conformation in those detergents which result in low TN's, e.g., Triton X-100.  相似文献   

10.
Experiments were performed to examine the cyanide-binding properties of resting and pulsed cytochrome c oxidase in both their stable and transient turnover states. Inhibition of the oxidation of ferrocytochrome c was monitored as a function of cyanide concentration. Cyanide binding to partially reduced forms produced by mixing cytochrome c oxidase with sodium dithionite was also examined. A model is presented that accounts fully for cyanide inhibition of the enzyme, the essential feature of which is the rapid, tight, binding of cyanide to transient, partially reduced, forms of the enzyme populated during turnover. Computer fitting of the experimentally obtained data to the kinetic predictions given by this model indicate that the cyanide-sensitive form of the enzyme binds the ligand with combination constants in excess of 10(6) M-1 X s-1 and with KD values of 50 nM or less. Kinetic difference spectra indicate that cyanide binds to oxidized cytochrome a33+ and that this occurs rapidly only when cytochrome a and CuA are reduced.  相似文献   

11.
A J Moody  U Brandt  P R Rich 《FEBS letters》1991,293(1-2):101-105
Evidence is presented that single electron reduction is sufficient for rapid electron transfer (k greater than 20 s-1 at pH 8.0 in 0.43 M potassium EDTA) between haem a/CuA and the binuclear centre in 'fast' oxidase, whereas in 'slow' oxidase intramolecular electron transfer is slow even when both CuA and haem a are reduced (k congruent to 0.01 s-1). However, while a single electron can equilibrate rapidly between CuA, haem a and CuB in 'fast' oxidase, it seems that equilibration with haem a3 is relatively slow (k congruent to 2 s-1). Electron transfer between cytochrome c and CuA/haem a is similar for both types of enzyme (k congruent to 2.4 x 10(5) M-1.s-1).  相似文献   

12.
The reaction between a cytochrome oxidase from Pseudomonas aeruginosa and oxygen has been studied by a rapid mixing technique. The data indicate that the heme d1 moiety of the ascorbate-reduced enzyme is oxidized faster than the heme c component. The oxidation of heme d1 is accurately second order with respect to oxygen and has a rate constant of 5.7 - 10(4) M-1 - s-1 at 20 degrees C. The oxidation of the heme c has a first order rate constant of about 8 s-1 at infinite concentration of O2. The results indicate that the rate-limiting step is the internal transfer of electrons from heme c to heme d1. These more rapid reactions are followed by more complicated but smaller abcorbance changes whose origin is still not clear. The reaction of ascorbate-reduced oxidase with CO has also been studied and is second order with a rate constant of 1.8 - 10(4) M-1 - s-1. The initial reaction with CO is followed by a slower reaction of significantly less magnitude. The equilibrium constant for the reaction with CO, calculated as a dissociation constant from titrimetric experiments with dithionite-reduced oxidase, is about 2.3 - 10(-6) M. From these data a rate constant of 0.041 s-1 can be calculated for the dissociation of CO from the enzyme.  相似文献   

13.
The binding of cyanide to both oxidized and ascorbate-reduced forms of Pseudomonas cytochrome c-551 oxidase was investigated. Spectral studies on the oxidized enzyme and its apoprotein showed that the ligand can bind to both the c and d, haem components of the molecule, and kinetic observations indicated that both chromophores reacted, under a variety of conditions, with very similar rates. Cyanide combination velocities were dependent on ligand concentration, and increasing the pH also accelerated the reaction; the second-order rate constant was estimated as approx. 0.2M-1 . s-1 at pH 7.0. The binding of cyanide to the protein was observed to have a considerable influence on reduction of the enzyme by ascorbate. Spectral and kinetic observations have revealed that the species haem d13+-cyanide and any unbound haem c may react relatively rapidly with the reductant, but the behaviour of cyanide-bound haem c indicates that it may not be reduced without prior dissociation of the ligand, which occurs relatively slowly. The reaction of reduced Pseudomonas cytochrome oxidase with cyanide is radically different from that of the oxidized protein. In this case the ligand only binds to the haem d1 component and reacts much more rapidly. Stopped-flow kinetic measurements showed the binding to be biphasic in form. Both the rates of these processes were dependent on cyanide concentration, with the fast phase having a second-order rate constant of 9.3 X 10(5) M-1 . s-1 and the slow phase one of 2.3 X 10(5) M-1 . s-1. The relative proportions of the two phases also showed a dependency on cyanide concentration, the slower phase increasing as the cyanide concentration decreased. Computer simulations indicate that a reaction scheme originally proposed for the reaction of the enzyme with CO is capable of providing a reasonable explanation of the experimental results. Static-titration data of the reduced enzyme with with cyanide indicated that the binding was non-stoicheiometric, the ligand-binding curve being sigmoidal in shape. A Hill plot of the results yielded a Hill coefficient of 2.6.  相似文献   

14.
The reduction of cytochrome c oxidase by dithionite was reinvestigated with a flow-flash technique and with varied enzyme preparations. Since cytochrome a3 may be defined as the heme in oxidase which can form a photolabile CO adduct in the reduced state, it is possible to follow the time course of cytochrome a3 reduction by monitoring the onset of photosensitivity. The onset of photosensitivity and the overall rate of heme reduction were compared for Yonetani and Hartzell-Beinert preparations of cytochrome c oxidase and for the enzyme isolated from blue marlin and hammerhead shark. For all of these preparations the faster phase of heme reduction, which is dithionite concentration-dependent, is almost completed when the fraction of photosensitive material is still small. We conclude that cytochrome a3 in the resting enzyme is consistently reduced by an intramolecular electron transfer mechanism. To determine if this is true also for the pulsed enzyme, we examined the time course of dithionite reduction of the peroxide complex of the pulsed enzyme. It has been previously shown that pulsed cytochrome c oxidase can interact with H2O2 and form a stable room temperature peroxide adduct (Bickar, D., Bonaventura, J., and Bonaventura, C. (1982) Biochemistry 21, 2661-2666). Rather complex kinetics of heme reduction are observed when dithionite is added to enzyme preparations that contain H2O2. The time courses observed provide unequivocal evidence that H2O2 can, under these conditions, be used by cytochrome c oxidase as an electron acceptor. Experiments carried out in the presence of CO show that a direct dithionite reduction of cytochrome a3 in the peroxide complex of the pulsed enzyme does not occur.  相似文献   

15.
We have investigated the inhibition of human leukocyte elastase and cathepsin G by recombinant Eglin c under near physiological conditions. The association rate constants k on of Eglin c for elastase and cathepsin G were 1.3 X 10(7) M-1 s-1 and 2 X 10(6) M-1 s-1, respectively. Under identical conditions, the k on for the association of human plasma alpha 1-proteinase inhibitor with the two leukocproteinases were 2.4 X 10(7) M-1 s-1 and 10(6) M-1 s-1, respectively. The consistency of these data could be verified using a set of competition experiments. The elastase-Eglin c interaction was studied in greater detail. The dissociation rate constant k off was determined by trapping of free elastase from an equilibrium mixture of elastase and Eglin c with alpha 1-proteinase inhibitor or alpha 2-macroglobulin. The rate of dissociation was very low (k off = 3.5 X 10(-5) s-1). The calculated equilibrium dissociation constant of the complex, Ki(calc) = k off/k on, was found to be 2.7 X 10(-12) M. Ki was also measured by adding elastase to mixtures of Eglin c and substrate and determining the steady-state rates of substrate hydrolysis. The Ki determined from these experiments (7.5 X 10(-11) M) was significantly higher than Ki(calc). This discrepancy might be explained by assuming that the interaction of Eglin c with elastase involves two steps: a fast binding reaction followed by a slow isomerization step. From the above kinetic constants it may be inferred that at a therapeutic concentration of 5 X 10(-7) M, Eglin c will inhibit leukocyte elastase in one second and will bind this enzyme in a "pseudo-irreversible" manner.  相似文献   

16.
1. The kinetics of the interaction of cytochrome c2 and photosynthetic reaction centers purified from Rhodobacter capsulatus were studied in proteoliposomes reconstituted with a mixture of phospholipids simulating the native membrane (i.e. containing 25% L-alpha-phosphatidylglycerol). 2. At low ionic strength, the kinetics of cytochrome-c2 oxidation induced by a single turnover flash was very different, depending on the concentration of cytochrome c2: at concentrations lower than 1 microM, the process was strictly bimolecular (second-order rate constant, k = 1.7 x 10(9) M-1 s-1), while at higher concentrations a fast oxidation process (half-time lower than 20 microseconds) became increasingly dominant and encompassed the total process at a cytochrome c2 concentration around 10 microM. From the concentration dependence of the amplitude of this fast phase an association constant for a reaction-center--cytochrome-c2 complex of about 10(5) M-1 was evaluated. From the fraction of photo-oxidized reaction centers promptly re-reduced in the presence of saturating concentrations of externally added cytochrome c2, it was found that in approximately 60% of the centers the cytochrome-c2 site was exposed to the external compartment. 3. Both the second-order oxidation reaction and the formation of the reaction-center--cytochrome-c2 complex were very sensitive to ionic strength. In the presence of 180 mM KCl, the value of the second-order rate constant was decreased to 7.0 x 10(7) M-1 s-1 and no fast oxidation of cytochrome c2 could be observed at 10 microM cytochrome c2. 4. The kinetics of exchange of oxidized cytochrome c2 bound to the reaction center with the reduced form of the same carrier, following a single turnover flash, was studied in double-flash experiments, varying the dark time between photoactivations over the range 30 microseconds to 5ms. The experimental results were analyzed according to aminimal kinetic model relating the amounts of oxidized cytochrome c2 and reaction centers observable after the second flash to the dark time between flashes. This model included the rate constants for the electron transfer between the primary and secondary ubiquinone acceptors of the complex (k1) and for the exchange of cytochrome c2 (k2). Fitting to the experimental results indicated a value of k1 equal to 2.4 x 10(3) s-1 and a lower limit for k2 of approximately 2 x 10(4) s-1 (corresponding to a second-order rate constant of approximately 3 x 10(9) M-1 s-1).  相似文献   

17.
Stopped flow experiments were carried out with purified hog thyroid peroxidase (A413 nm/A280 nm = 0.42). It reacted with H2O2 to form Compound I with a rate constant of 7.8 X 10(6) M-1 s-1. Compound I was reduced to Compound II by endogeneous donor with a half-life of 0.36 s. Compound I was reduced by tyrosine directly to the ferric enzyme with a rate constant of 7.5 X 10(4) M-1 s-1. Tyrosine could also reduce Compound II to the ferric enzyme with a rate constant of 4.3 X 10(2) M-1 s-1. Methylmercaptoimidazole accelerated the conversion of Compound I to Compound II and reacted with Compound II to form an inactivated form, which was discernible spectrophotometrically. The reactions of thyroid peroxidase with methylmercaptoimidazole quite resembled those of lactoperoxidase, but occurred at higher speeds. The absorption spectra of thyroid peroxidase were similar to those of lactoperoxidase and intestinal peroxidase, but obviously different from those of metmyoglobin, horseradish peroxidase, and chloroperoxidase. Similarity and dissimilarity between thyroid peroxidase and lactoperoxidase are discussed.  相似文献   

18.
(1) The reaction of the resting form of oxidised cytochrome c oxidase from ox heart with dithionite has been studied in the presence and absence of cyanide. In both cases, cytochrome a reduction in 0.1 M phosphate (pH 7) occurs at a rate of 8.2.10(4) M-1.s-1. In the absence of cyanide, ferrocytochrome a3 appears at a rate (kobs) of 0.016 s-1. Ferricytochrome a3 maintains its 418 nm Soret maximum until reduced. The rate of a3 reduction is independent of dithionite concentration over a range 0.9 mM-131 mM. In the presence or cyanide, visible and EPR spectral changes indicate the formation of a ferric a3/cyanide complex occurs at the same rate as a3 reduction in the absence of cyanide. A g = 3.6 signal appears at the same time as the decay of a g = 6 signal. No EPR signals which could be attributed to copper in any significant amounts could be detected after dithionite addition, either in the presence or absence of cyanide. (2) Addition of dithionite to cytochrome oxidase at various times following induction of turnover with ascorbate/TMPD, results in a biphasic reduction of cytochrome a3 with an increasing proportion of the fast phase of reduction occurring after longer turnover times. At the same time, the predominant steady state species of ferri-cytochrome a3 shifts from high to low spin and the steady-state level of reduction of cytochrome a drops indicating a shift in population of the enzyme molecules to a species with fast turnover. In the final activated form, oxygen is not required for fast internal electron transfer to cytochrome a3. In addition, oxygen does not induce further electron uptake in samples of resting cytochrome oxidase reduced under anaerobic conditions in the presence of cyanide. Both findings are contrary to predictions of certain O-loop types of mechanism for proton translocation. (3) A measurement of electron entry into the resting form of cytochrome oxidase in the presence of cyanide, using TMPD or cytochrome c under anaerobic conditions, shows that three electrons per oxidase enter below a redox potential of around +200 mV. An initial fast entry of two electrons is followed by a slow (kobs approximately 0.02 s) entry of a third electron.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
J Everse  N Kujundzic 《Biochemistry》1979,18(12):2668-2673
A detailed investigation of the reduction of cytochrome c by glutathione has shown that the reaction proceeds through several steps. A rapid combination of the reducing agent with the cytochrome leads to the formation of a glutathione-cytochrome intermediate in which the glutathione most likely interacts with the edge of the heme moiety. The electron transfer takes place in a subsequent slower step. Since cytochrome c(III) exists in two conformational forms at neutral pH [Kujundzic, N., & Everse, J. (1978) Biochem. Biophys. Res. Commun. 82, 1211], the reduction of cytochrome c by glutathione may be represented by cyt c(III) + GS- reversible K1 cyt c(III) ... GS- reversible k1 products cyt c*(III) + GS- reversible K2 cyt c*(III) ... GS- reversible k2 products At 25 degrees C, pH 7.5, and an ionic strength of 1.0 (NaCl), k1 = 1.2 X 10(-3) S-1, k2 = 2.0 X 10(-3) S-1, k1 = 2.9 X 10(3) M-1, and K2 = 5.3 X 10(3) M-1. The reaction is catalyzed by trisulfides, and second-order rate constants of 4.55 X 10(3) and 7.14 X 10(3) M-1 S-1 were obtained for methyl trisulfide and cysteine trisulfide, respectively.  相似文献   

20.
The redox reaction between cytochrome c-551 and its oxidase from the respiratory chain of pseudomonas aeruginosa was studied by rapid-mixing techniques at both pH7 and 9.1. The electron transfer in the direction of cytochrome c-551 reduction, starting with the oxidase in the reduced and CO-bound form, is monophasic, and the governing bimolecular rate constants are 1.3(+/- 0.2) x 10(7) M-1 . s-1 at pH 9.1 and 4 (+/- 1) x 10(6) M-1 . s-1 at pH 7.0. In the opposite direction, i.e. mixing the oxidized oxidase with the reduced cytochrome c-551 in the absence of O2, both a lower absorbance change and a more complex kinetic pattern were observed. With oxidized azurin instead of oxidized cytochrome c-551 the oxidation of the c haem in the CO-bound oxidase is also monophasic, and the second-order rate constant is 2 (+/- 0.7) x 10(6) M-1 . s-1 at pH 9.1. The redox potential of the c haem in the oxidase, as obtained from kinetic titrations of the completely oxidized enzyme with reduced azurin as the variable substrate, is 288 mV at pH 7.0 and 255 mV at pH 9.1. This is in contrast with the very high affinity observed in similar titrations performed with both oxidized azurin and oxidized cytochrome c-551 starting from the CO derivative of the reduced oxidase. It is concluded that: (i) azurin and cytochrome c-551 are not equally efficient in vitro as reducing substrates of the oxidase in the respiratory chain of Pseudomonas aeruginosa; (ii) CO ligation to the d1 haem in the oxidase induces a large decrease (at least 80 mV) in the redox potential of the c-haem moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号