首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identified neurons and members of functionally characterized clusters of the central nervous system of Lymnaea stagnalis L. were studied. Long-term spike trains (10-100 min) were collected using current clamp method. Firing patterns were analyzed by several mathematical tools e.g.: spike density function (SDF), interspike interval (ISI), Fourier-transform. Both the spike trains and oscillation of firing were modulated by 5HT (2 x 10(-5) M) and mu-opioid peptides (10(-5) M). Co-application of 5HT (2 x 10(-5) M) and DAGO (10(-5) M) turned the firing of the neurons (RPeD1 and A cells) opposite to the running pattern and eliminated the 0.3 Hz oscillation causing a new slow periodicity (0.1-0.05 Hz).  相似文献   

2.
Identified neurons regulating visceral functions in Helix pomatia reacted selectively to FMRFamide peptide applied to the membrane, some becoming depolarized others hyperpolarized. The effect of morphine and leu-enkephalin was similar to that of FMRFamide. The ACh-induced depolarization was decreased by FMRFamide, morphine, leu-enkephalin and naloxone on the neuron LPa5, while this modulatory effect was not observed on other neurons involved in the regulation of visceral functions. The opiate peptides and FMRFamide may play a modulatory role in molluscan CNS.  相似文献   

3.
The orexigenic peptide, ghrelin is known to influence function of GnRH neurons, however, the direct effects of the hormone upon these neurons have not been explored, yet. The present study was undertaken to reveal expression of growth hormone secretagogue receptor (GHS-R) in GnRH neurons and elucidate the mechanisms of ghrelin actions upon them. Ca2+-imaging revealed a ghrelin-triggered increase of the Ca2+-content in GT1-7 neurons kept in a steroid-free medium, which was abolished by GHS-R-antagonist JMV2959 (10µM) suggesting direct action of ghrelin. Estradiol (1nM) eliminated the ghrelin-evoked rise of Ca2+-content, indicating the estradiol dependency of the process. Expression of GHS-R mRNA was then confirmed in GnRH-GFP neurons of transgenic mice by single cell RT-PCR. Firing rate and burst frequency of GnRH-GFP neurons were lower in metestrous than proestrous mice. Ghrelin (40nM-4μM) administration resulted in a decreased firing rate and burst frequency of GnRH neurons in metestrous, but not in proestrous mice. Ghrelin also decreased the firing rate of GnRH neurons in males. The ghrelin-evoked alterations of the firing parameters were prevented by JMV2959, supporting the receptor-specific actions of ghrelin on GnRH neurons. In metestrous mice, ghrelin decreased the frequency of GABAergic mPSCs in GnRH neurons. Effects of ghrelin were abolished by the cannabinoid receptor type-1 (CB1) antagonist AM251 (1µM) and the intracellularly applied DAG-lipase inhibitor THL (10µM), indicating the involvement of retrograde endocannabinoid signaling. These findings demonstrate that ghrelin exerts direct regulatory effects on GnRH neurons via GHS-R, and modulates the firing of GnRH neurons in an ovarian-cycle and endocannabinoid dependent manner.  相似文献   

4.
The thalamic midline paraventricular nucleus (PVT) is prominently innervated by vasopressin-immunoreactive neurons from the suprachiasmatic nucleus (SCN), site of the brain's biological clock. Using patch-clamp recordings in slice preparations taken from Wistar rats during the subjective day, we examined 90 PVT neurons for responses to bath-applied AVP (0.5-2 microM; 1-3 min). In current clamp at resting membrane potentials (-65 +/- 1 mV), PVT neurons displayed low-threshold spikes (LTSs) and burst firing patterns. In 50% of cells tested, AVP induced a slowly rising, prolonged membrane depolarization and tonic firing, returning to burst firing upon recovery. AVP modulated hyperpolarization-activated LTSs by decreasing the time to the initial sodium spike at the onset of LTS, also increasing the duration of the afterdepolarization. Responses were blockable with a V(1a) receptor antagonist (Manning compound). Under voltage clamp, AVP induced a TTX-resistant, slowly rising, and prolonged (approximately 15 min) inward current (<40 pA). Current-voltage relationship (I-V) analyses of the AVP responses revealed a decrease in membrane conductance to 73.1 +/- 6.2% of control, with net AVP current reversing at -106 +/- 4 mV, and decreased inward rectification at negative potentials. These observations are consistent with an AVP-induced closure of an inwardly rectifying potassium conductance. On the basis of these in vitro observations, we suggest that the SCN vasopressinergic innervation of PVT is excitatory in nature, possibly releasing AVP with circadian rhythmicity and contributing to state-dependent firing patterns in PVT neurons over the sleep-wake cycle.  相似文献   

5.
The neuropeptide proctolin has excitatory effects on the isolated lobster cardiac ganglion. Selective application to the anterior cell body region produces a dose-dependent (10(-8)--10(-5) M) prolonged depolarization of large anterior cells as well as marked increases in burst frequency and/or duration. In ganglia which have been silenced with tetrodotoxin, proctolin application to anterior cells elicits long-lasting depolarizing responses which are accompanied by a 10-30% increase of the apparent membrane input resistance. Higher proctolin concentrations produce high-frequency trains of driver potentials. It is proposed that a proctolin like peptide may serve a neurohumoral role in the lobster cardiac ganglion and that the anterior motor neurons exhibit endogenous rhythmicity in its presence.  相似文献   

6.
Morphine, met-enkephalin, and leu-enkephalin in a concentration of 1×10?5 M depress rapidly and reversibly the amplitude of depolarization induced by dopamine application toHelix pomatia neurons; the effect is naloxone-dependent. The amplitudes of dopamine-induced hyperpolarization and also of the depolarization and hyperpolarization responses to acetylcholine application are unchanged under these circumstances. The hypothesis of blocking of chemosensitive sodium channels by enkephalins is discussed. It is suggested that this hypothesis is true for high concentrations of morphine and enkephalins (1×10?4 to 1×10?3 M). In lower concentrations (1×10?5 M) morphine and enkephalins lead to modulation of the reponses to the action of neurotransmitters, evidently through their influence on the cyclic nucleotide system.  相似文献   

7.
The ionic mechanisms underlying modulatory effects of serotonin on acetylcholine-response in identified and nonidentifiedHelix pomatia neurons were investigated using voltage-clamping techniques at the neuronal membrane. External application of 10–5–10–4 M serotonin to the membrane of neurons responding to application of acetylcholine depending on Na+ depolarization (DNa response) reduced membrane conductivity during response to acetylcholine without changing reversal potential of acetylcholine-induced current. Acetylcholine (10–6–10–4 M) administration took place 1–3 min later. Neurons with response to acetylcholine application dependent on Cl+ depolarization (DCl response) or hyperpolarization (HCl response) behaved similarly. Analogous effects could be produced by external application of theophylline which, together with the latency and residual effect characteristic of serotonin action points to the participation of intracellular processes associated with the cellular cyclase system in the changes produced by serotonin in acetylcholineinduced response. Serotonin brought about a shift in reversal potential and an increase in the acetylcholine-induced current in those neurons where this response was associated with changed permeability at the membrane to certain types of ions. During two-stage acetylcholine-induced response of the DNa-HK type, serotonin inhibited the inward current stage. Mechanisms underlying modulatory serotonin action on acetylcholine-induced response in test neurons are discussed in the light of our findings.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 57–64, January–February, 1988.  相似文献   

8.
Neuronal background activity was investigated in a hemisegment of the lumbar section of the spinal cord before and after addition of serotonin (5-HT — 1 × 10–8–10–4 M) in 14- to 22-day-old rats. Reversible changes in background firing rate were recorded in 50% and 70.6% of dorsal and ventral horn interneurons respectively. Excitatory response predominated; in the dorsal horn, 62.4% of all cells responding to 5-HT showed an excitatory response, 8.4% an inhibitory reaction, and 29.2% a two-stage response. In the ventral horn, an excitatory and two-stage response were recorded in 91.6% and 8.4% of cells respectively. Application of 5-HT induced an increase in firing rate and depolarization in the ventral horn. Findings from this study would point to a primarily excitatory effect of 5-HT on background in segmental neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 3, pp. 335–343, May–June, 1989.  相似文献   

9.
A model of the electrophysiological properties of rodent nucleus reticularis thalami (NRT) neurons of the dorsal lateral thalamus was developed using Hodgkin-Huxley style equations. The model incorporated voltage-dependent rate constants and kinetics obtained from recent voltage-clamp experiments in vitro. The intrinsic electroresponsivity of the model cell was found to be similar to several empirical observations. Three distinct modes of oscillatory activity were identified: 1) a pattern of slow rhythmic burst firing (0.5-7 Hz) usually associated with membrane potentials negative to approximately -70 mV which resulted from the interplay of ITs and IK(Ca); 2) at membrane potentials from approximately -69 to -62 mV, rhythmic burst firing in the spindle frequency range (7-12 Hz) developed and was immediately followed by a tonic tail of single spike firing after several bursts. The initial bursting rhythm resulted from the interaction of ITs and IK(Ca), with a slow after-depolarization due to ICAN which mediated the later tonic firing; 3) with further depolarization of the membrane potential positive to approximately -61 mV, sustained tonic firing appeared in the 10-200-Hz frequency range depending on the amplitude of the injected current. The frequency of this firing was also dependent on the maximum conductance of the leak current, IK(leak), and an interaction between the fast currents involved in generating action potentials, INa(fast) and IK(DR), and the persistent Na+ current, INa(P). Transitions between different firing modes were identified and studied parametrically.  相似文献   

10.
TheBulla ocular circadian pacemaker   总被引:3,自引:0,他引:3  
In an effort to understand the cellular basis of entrainment of circadian oscillators we have studied the role of membrane potential changes in the neurons which comprise the ocular circadian pacemaker of Bulla gouldiana in mediating phase shifts of the ocular circadian rhythm. We report that: 1. Intracellular recording was used to measure directly the effects of the phase shifting agents light, serotonin, and 8-bromo-cAMP on the membrane potential of the basal retinal neurons. We found that light pulses evoke a transient depolarization followed by a smaller sustained depolarization. Application of serotonin produced a biphasic response; a transient depolarization followed by a sustained hyperpolarization. Application of a membrane permeable analog of the intracellular second messenger cAMP, 8-bromo-cAMP, elicited sustained hyperpolarization, and occasionally a weak phasic depolarization. 2. Changing the membrane potential of the basal retinal neurons directly and selectively with intracellularly injected current phase shifts the ocular circadian rhythm. Both depolarizing and hyperpolarizing current can shift the phase of the circadian oscillator. Depolarizing current mimics the phase shifting action of light, while hyperpolarizing current produces phase shifts which are transposed approximately 180 degrees in circadian time to depolarization. 3. Altering BRN membrane potential with ionic treatments, depolarizing with elevated K+ seawater or hyperpolarizing with lowered Na+ seawater, produces phase shifts similar to current injection. 4. The light-induced depolarization of the basal retinal neurons is necessary for phase shifts by light. Suppressing the light-induced depolarization with injected current inhibits light-induced phase shifts. 5. The ability of membrane potential changes to shift oscillator phase is dependent on extracellular calcium. Reducing extracellular free Ca++ from 10 mM to 1.3 X 10(-7) M inhibits light-induced phase shifts without blocking the photic response of the BRNs. The results indicate that changes in the membrane potential of the pacemaker neurons play a critical role in phase shifting the circadian rhythm, and imply that a voltage-dependent and calcium-dependent process, possibly Ca++ influx, shifts oscillator phase in response to light.  相似文献   

11.
The effects of serotonin on the electrical properties of swim-gating neurons (cell 204) were examined in leech (Hirudo medicinalis) nerve cords. Exposure to serotonin decreased the threshold current required to elicit swim episodes by prolonged depolarization of an individual cell 204 in isolated nerve cords. This effect was correlated with a more rapid depolarization and an increased impulse frequency of cell 204 in the first second of stimulation. In normal leech saline, brief depolarizing current pulses (1 s) injected into cell 204 failed to elicit swim episodes. Following exposure to serotonin, however, identical pulses consistently evoked swim episodes. Thus, serotonin appears to transform cell 204 from a gating to a trigger cell.Serotonin had little effect on the steady-state currentvoltage relation of cell 204. However, serotonin altered the membrane potential trajectories in response to injected current pulses and increased the amplitude of rebound responses occurring at the offset of current pulses. These changes suggest that serotonin modulates one or more voltage dependent conductances in cell 204, resulting in a more rapid depolarization and greater firing rate in response to injected currents. Thus, modulation of intrinsic ionic conductances in cell 204 may account in part for the increased probability of swimming behavior induced by serotonin in intact leeches.Abbreviations AHP afterhyperpolarizing potential - DCC discontinuous current clamp - DP dorsal posterior nerve - G2 segmental ganglion 2 - PIR postinhibitory rebound - RMP resting membrane potential  相似文献   

12.
The resonance properties of individual neurons in entorhinal cortex (EC) may contribute to their functional properties in awake, behaving rats. Models propose that entorhinal grid cells could arise from shifts in the intrinsic frequency of neurons caused by changes in membrane potential owing to depolarizing input from neurons coding velocity. To test for potential changes in intrinsic frequency, we measured the resonance properties of neurons at different membrane potentials in neurons in medial and lateral EC. In medial entorhinal neurons, the resonant frequency of individual neurons decreased in a linear manner as the membrane potential was depolarized between -70 and -55 mV. At more hyperpolarized membrane potentials, cells asymptotically approached a maximum resonance frequency. Consistent with the previous studies, near resting potential, the cells of the medial EC possessed a decreasing gradient of resonance frequency along the dorsal to ventral axis, and cells of the lateral EC lacked resonant properties, regardless of membrane potential or position along the medial to lateral axis within lateral EC. Application of 10 μM ZD7288, the H-channel blocker, abolished all resonant properties in MEC cells, and resulted in physiological properties very similar to lateral EC cells. These results on resonant properties show a clear change in frequency response with depolarization that could contribute to the generation of grid cell firing properties in the medial EC.  相似文献   

13.
Orexin-A (ORX-A) and orexin-B (ORX-B), also called hypocretin-1 and hypocretin-2, respectively, act upon orexin 1 (OX1R) and orexin 2 (OX2R) receptors, and are involved in the regulation of sleep-wakefulness and energy homeostasis. Orexin neurons in the lateral hypothalamic perifornical region project heavily to the paraventricular nucleus of the thalamus (PVT), which is deeply involved in the control of motivated behaviors. In the present study, electrophysiological and cytosolic Ca2+ concentration ([Ca2+]i) imaging studies on the effects of ORX-A and ORX-B on neurons in the PVT were carried out in rat brain slice preparations. ORX-A and/or ORX-B were applied extracellularly in the perfusate. Extracellular recordings showed that about 80% of the PVT neurons were excited dose-dependently by both ORX-A and ORX-B at concentrations of 10(-8) to 10(-6)M, and the increase in firing rate was about three times larger for ORX-B than for ORX-A at 10(-7)M. When both ORX-A and ORX-B were applied simultaneously at 10(-7)M, the increase in firing rate was almost equal to that of ORX-B at 10(-7)M, suggesting that the PVT neurons do not show a high affinity to ORX-A which is expected if they have OX1R receptors. The excitatory effect of ORX-B was seen in low Ca2+ and high Mg2+ ACSF as well as in normal ACSF, and the increase in firing rate was greater in low Ca2+ and high Mg2+ ACSF than in normal ACSF. [Ca2+]i imaging studies demonstrated that [Ca2+]i was increased in about 50% of the PVT neurons by both 10(-7)M ORX-A and ORX-B with a stronger effect for ORX-B, and the increase in [Ca2+]i induced by ORX-B was abolished in Ca2+-free ACSF, suggesting that ORX-B does not release Ca2+ from intracellular Ca2+ stores. Subsequent whole cell patch clamp recordings revealed that an after hyperpolarization seen following each action potential in normal ACSF disappeared in Ca2+-free ACSF, and the mean magnitude of the depolarization induced by ORX-B was same in normal, Ca2+-free and TTX-containing Ca2+-free ACSFs. Furthermore, ORX-B-induced depolarization was reversed to hyperpolarization when membrane potential was lowered to about -97 mV, and an increase of extracellular K+ concentration from 4.25 to 13.25 mM abolished the ORX-B-induced depolarization, indicating that the ORX-B-induced depolarization is associated with an increase in the membrane resistance resulting from a closure of K+ channels. These results suggest that orexins depolarize and excite post-synaptically PVT neurons via OX2R receptors, and that orexin-activated PVT neurons play a role in the integration of sleep-wakefulness and energy homeostasis, and in the control of motivated behaviors.  相似文献   

14.
The electrical properties of neurons in the supraoptic nucleus (so.n.) have been studied in the hypothalamic slice preparation by intracellular and extracellular recording techniques, with Lucifer Yellow CH dye injection to mark the recording site as being the so.n. Intracellular recordings from so.n. neurons revealed them to have an average membrane potential of -67 +/- 0.8 mV (mean +/- s.e.m.), membrane resistance of 145 +/- 9 M omega with linear current-voltage relations from 40 mV in the hyperpolarizing direction to the level of spike threshold in the depolarizing direction. Average cell time constant was 14 +/- 2.2 ms. So.n. action potentials ranged in amplitude from 55 to 95 mV, with a mean of 76 +/- 2 mV, and a spike width of 2.6 +/- 0.5 ms at 30% of maximal spike height. Both single spikes and trains of spikes were followed by a strong, long-lasting hyperpolarization with a decay fitted by a single exponential having a time constant of 8.6 +/- 1.8 ms. Action potentials could be blocked by 10(-6) M tetrodotoxin. Spontaneously active so.n. neurons were characterized by synaptic input in the form of excitatory and inhibitory postsynaptic potentials, the latter being apparently blocked when 4 M KCl electrodes were used. Both forms of synaptic activity were blocked by application of divalent cations such as Mg2+, Mn2+ or Co2+. 74% of so.n. neurons fired spontaneously at rates exceeding 0.1 spikes per second, with a mean for all cells of 2.9 +/- 0.2 s-1. Of these cells, 21% fired slowly and continuously at 0.1 - 1.0 s-1, 45% fired continuously at greater than 1 Hz, and the remaining 34% fired phasically in bursts of activity followed by silence or low frequency firing. Spontaneously firing phasic cells showed a mean burst length of 16.7 +/- 4.5 s and a silent period of 28.2 +/- 4.2 s. Intracellular recordings revealed the presence of slow variations in membrane potential which modified the neuron's proximity to spike threshold, and controlled phasic firing. Variations in synaptic input were not observed to influence firing in phasic cells.  相似文献   

15.
Kong DH  Wang G  Wang HM  Ke DP  Hu JL  Zhu Y  Huang ZX 《生理学报》2003,55(4):388-394
应用细胞内记录技术,对铃蟾肽(bombesin,BOM)在豚鼠离体肠系膜下神经节(inferior mesenteric ganglion,IMG)非胆碱能兴奋性突触传递中的作用进行了研究。重复电刺激突触前结肠神经,有74.3%(52/70)IMG细胞可诱发迟慢兴奋性突触后电位(ls-EPSP)。在可引出ls-EPSP的细胞中,22%(4/18)细胞同时对BOM和SP敏感。用BOM持续灌流IMG,可明显抑制对BOM敏感细胞的ls-EPSP,对BOM不敏感细胞的ls-EPSP则无影响,且BOM受体与SP受体间无交叉脱敏。BOM受体阻断剂tyr^4[D-phe^12]bombesin能明显可逆性地抑制BOM敏感细胞的ls-EPSP和去极化,但对BOM不敏感细胞则无影响。研究结果提示,BOM可能是介导豚鼠IMG细胞ls-EPSP的一种递质。  相似文献   

16.
The neuropeptide proctolin has distinguishable excitatory effects upon premotor cells and motorneurons of Homarus cardiac ganglion. Proctolin's excitation of the small, premotor, posterior cells is rapid in onset (5–10 s) and readily reversible (< 3 min). Prolonged bursts in small cells often produce a “doublet” ganglionic burst mode via interactions with large motorneuron burst-generating driver potentials. In contrast to small cell response, proctolin's direct excitatory effects upon motorneuron are slow in onset (60–90 s to peak) and long-lasting (10–20 min). The latter include: (a) a concentration-dependent (10?9–10?7M) depolarization of the somatic membrane potential; (b) increases in burst frequency and (c) enhancement of the rate of depolarization of the interburst pacemaker potential. Experiments on isolated large cells indicate: (a) the slow depolarization is produced by a decrease in the resting GK and (b) proctolin can produce or enhance motorneuron autorhythmicity. A two-tiered non-hierarchical network model is proposed. The differential pharmacodynamics exhibited by the two cell types accounts for the sequential modes of ganglionic burst activity produced by proctolin.  相似文献   

17.
The neurons of the dorsal surface of snail Helix subesophageal ganglia respond similarly to the application of serotonin and the intracellular cAMP injection. These responses represent membrane depolarization. They increase in amplitude with membrane hyperpolarization and have a reverse potential between +10 and -30 mV. Presumably, these responses are associated with increased conductance for several ions. The values of the reverse potentials of serotonin and cAMP responses coincide in 7 out of 17 cells. Phosphodiesterase inhibitor theophylline caused a reversible increase in the amplitude and duration of both serotonin and cAMP responses and, used at a concentration of 1 mM, simulated them. The results obtained meet 2 out of 4 criteria demonstrating that cyclic nucleotides mediate a neurotransmitter response. It is suggested that cAMP may act as a second messenger in excitatory serotonin responses of snail Helix neurons.  相似文献   

18.
Intracellular recordings were obtained from rat hippocampal neurons during the microiontophoretic ejection of the stereoisomers of cis- and trans-1-amino-1,3-cyclopentane dicarboxylate into the dendritic region (stratum radiatum) of the impaled cells. L-(+)-cis-1-Amino-1,3-cyclopentane dicarboxylate, D(+)-trans-1-amino-1,3-cyclopentane dicarboxylate, and L-(-)-trans-1-amino-1,3-cyclopentane dicarboxylate all evoked patterns of excitation resembling that elicited by kainate. All of these responses were unaffected by D-(-)-2-amino-5-phosphonovalerate but were antagonized at comparable currents by kynurenate. The excitation produced by D-(-)-cis-1-amino-1,3-cyclopentane dicarboxylate was similar to that evoked by N-methyl-D-aspartate. At low ejection currents a slow depolarization triggered rhythmic burst firing, each burst consisting of a depolarizing shift in membrane potential upon which were superimposed four to five action potentials. These responses were antagonized both by D-(-)-2-amino-5-phosphonovalerate and by kynurenate. The results are discussed with respect to the conformational requirements considered to be necessary for interaction at the kainate and N-methyl-D-aspartate receptors on CA1 pyramidal neurones. It is important to note that the isopropylene side chain of kainate is absent from the 1-amino-1-3-cyclopentane dicarboxylate molecule.  相似文献   

19.
Neutrophil hyperpolarization in response to a chemotactic peptide   总被引:3,自引:0,他引:3  
The chemotactic peptide formylmethionyl-leucyl-phenylalanine (fMLP), at concentrations below 10(-9) M, elicits a sustained increase in the human neutrophil's membrane potential within 10 s of its addition. This hyperpolarization, detected with the fluorescent cationic potentiometric probes, 3,3'-dipentyloxacarbocyanine (diO-C5-(3)), and 1,1'-dipropyl-3,3,3',3'-tetramethylindocarbocyanine iodide (diI-C3-(3)), and with the anionic probe bis-(1,3-diethylthiobarbituric)trimethine oxonol (bis-oxonol), is immediately followed by a large depolarization when [fMLP] greater than 10(-9) M. By extracellular substitution of sodium ions with potassium ions or choline or by pretreatment of the cells with ionophores, we report here that the hyperpolarization is primarily dependent on an intact potassium ion gradient and is accompanied by a concurrent acidification of the cytoplasm (approximately 0.05 pH unit) Although the latter occurs simultaneously with a large, transient increase in cytosolic Ca2+ at [fMLP] greater than 10(-10) M, it occurs without a detectable increase in cytosolic Ca2+ at [fMLP] less than 10(-10) M. The hyperpolarization is neither affected nor initiated by the chemotactic peptide antagonist tert-butyloxycarbonyl-methionyl-leucyl-phenylalanine, whereas the depolarization is completely inhibited. Neutrophils isolated from patients with X-linked chronic granulomatous disease exhibit normal hyperpolarizations and cytosolic Ca2+ increases in response to chemotactic peptides but exhibit no depolarization or oxidative burst. The hyperpolarization appears earlier in the ontogeny of differentiating myeloid precursor cells than either the rise in cytosolic Ca2+ or the depolarization response. Together, these findings indicate that an increase in transmembrane potential is one of the earliest events in the neutrophil response to chemotactic peptides, coinciding temporally with increases in cytoplasmic Ca2+ and H+ concentrations but preceding detectable oxidative burst activity.  相似文献   

20.
Application of 5-hydroxytryptamine (5-HT) (3 x 10(-5) M) on the rat lumbar dorsal ganglia (RDG) induced membrane depolarization with increased input resistance in 30% of neurons, hyperpolarization with decreased input resistance in 30% of neurons and mixed responses in 40% of neurons. Methysergide and amitriptyline (10(-6) M) blocked depolarizing but not hyperpolarizing effects of 5-HT. Propranolol (3 x 10(-6) M) was inactive in respect to both 5-HT responses. 5-HT depolarizing responses of RDG neurons were mediated by 5-HT2 receptors activation and decreased membrane potassium conductivity; 5-HT hyperpolarizing responses were mediated by 5-HT1A receptor activation and increased potassium conductivity. RDG neurons seem to be an interesting model for the investigation of central 5-HT receptor mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号