共查询到20条相似文献,搜索用时 0 毫秒
1.
Collection of published 5S and 5.8S RNA sequences and their precursors 总被引:13,自引:11,他引:2
Volker A. Erdmann 《Nucleic acids research》1979,6(1):r29-r44
2.
Volker A. Erdmann 《Nucleic acids research》1981,9(1):r25-r42
3.
V A Erdmann 《Nucleic acids research》1980,8(1):r31-r47
4.
Volker A. Erdmann 《Nucleic acids research》1978,5(1):r1-r13
5.
Volker A. Erdmann Erik Huysmans Antoon Vandenberghe Rupert De Wachter 《Nucleic acids research》1983,11(1):r105-r133
6.
5 S and 5.8 S ribosomal RNA sequences and protist phylogenetics 总被引:1,自引:0,他引:1
W F Walker 《Bio Systems》1985,18(3-4):269-278
More than 100 5 S 5.8 S rRNA sequences from protists, including fungi, are known. Through a combination of quantitative treeing and special consideration of "signature' nucleotide combinations, the most significant phylogenetic implications of these data are emphasized. Also, limitations of the data for phylogenetic inferences are discussed and other significant data are brought to bear on the inferences obtained. 5 S sequences from red algae are seen as the most isolated among eukaryotics. A 5 S sequence lineage consisting of oomycetes, euglenoids, most protozoa, most slime molds and perhaps dinoflagellates and mesozoa is defined. Such a lineage is not evident from 5.8 S rRNA or cytochrome c sequence data. 5 S sequences from Ascomycota and Basidiomycota are consistent with the proposal that each is derived from a mycelial form with a haploid yeast phase and simple septal pores, probably most resembling present Taphrinales. 5 S sequences from Chytridiomycota and Zygomycota are not clearly distinct from each other and suggest that a major lineage radiation occurred in the early history of each. Qualitative biochemical data clearly supports a dichotomy between an Ascomycota-Basidiomycota lineage and a Zygomycota-Chytridiomycota lineage. 相似文献
7.
The 5S and 5.8S ribosomal RNA sequences of Tetrahymena thermophila and T. pyriformis 总被引:1,自引:0,他引:1
C T Van Bell 《The Journal of protozoology》1985,32(4):640-644
The nucleotide sequences of the 5S rRNAs of Tetrahymena thermophila and two strains of T. pyriformis have been determined to be identical. The 5.8S rRNA sequences have also been determined; these sequences correct several errors in an earlier report. The 5.8S rRNAs of the two species differ at a single position. The sequencing results indicate that the species are of recent common ancestry. Molecular evidence that has been interpreted in the past as suggestive of an ancient divergence has been reviewed and found to be consistent with a T. pyriformis complex radiation beginning approximately 30-40 million years ago. 相似文献
8.
9.
10.
Nucleotide sequence and structure of cytoplasmic 5S RNA and 5.8S RNA of Chlamydomonas reinhardii. 总被引:11,自引:11,他引:0 下载免费PDF全文
Three small RNAs of the cytoplasmic 8OS ribosomes of the green unicellular alga Chlamydomonas reinhardii have been sequenced. They include two species of ribosomal 5S RNA, a major and a minor one of 122 and 121 nucleotides respectively, which differ from each other by 17 bases, and also the ribosomal 5.8S RNA of 156 nucleotides. Novel structural features can be recognized in the 5S RNAs of C. reinhardii by a comparison with published 5S RNA sequences. In addition the secondary structure of these small RNA molecules has been examined using a newly developed method based on differential nuclease susceptibility. 相似文献
11.
Location of single-stranded and double-stranded regions in rat liver ribosomal 5S RNA and 5.8S RNA. 总被引:1,自引:4,他引:1 下载免费PDF全文
Rat liver 5S rRNA and 5.8S rRNA were end-labelled with 32P at 5'-end or 3'-end of the polynucleotide chain and partially digested with single-strand specific S1 nuclease and double-strand specific endonuclease from the cobra Naja naja oxiana venom. The parallel use of these two structure-specific enzymes in combination with rapid sequencing technique allowed the exact localization of single-stranded and double-stranded regions in 5S RNA and 5.8 S RNA. The most accessible regions to S1 nuclease in 5S RNA are regions 33-42, 74-78, 102-103 and in 5.8 S RNA 16-20, 26-29, 34-36, 74-80 and a region around 125-130. The cobra venom endonuclease cleaves the following areas in 5S RNA: 7-8, 17-20, 28-30, 49-51, 56-57, 60-64, 69-70, 81-82, 95-97, 106-112. In 5.8S RNA the venom endonuclease cleavage sites are 4-7, 10-13, 21-22, 33-35, 43-45, 51-55, 72-74, 85-87, 98-99, 105-106, 114-115, 132-135. According to these results the tRNA binding sequences proposed by Nishikawa and Takemura [(1974) FEBS Lett. 40, 106-109], in 5S RNA are located in partly single-stranded region, but in 5.8S RNA in double-stranded region. 相似文献
12.
Rat liver 60S ribosomal subunits were irradiated with 254-nm ultraviolet light (1.26 X 10(4) quanta/subunit), under conditions which preserved their functional activity. Cross-linked RNA-protein complexes were recovered after unreacted proteins had been removed by repeated acetic acid extractions. Proteins linked to the whole rRNA, to 5S RNA and to 28-5.8 S RNAs were identified by two-dimensional gel electrophoresis after RNA hydrolysis by ribonucleases T1 and A. Our results showed that numerous proteins interact with rRNAs (at least ten with 28-5.8 S RNA, eight with 5S RNA and among these three are common to both) and have been discussed in the light of all the available data. 相似文献
13.
Determination of base pairing in yeast 5S and 5.8S RNA infrared spectroscopy. 总被引:4,自引:3,他引:1 下载免费PDF全文
Infrared Spectroscopy was used to determine the numbers of base pairs for yeast 5S RNA and 5.8S RNA. The spectra were recorded at 20 degrees C and 50 degrees C, where tertiary interactions are assumed to be of less importance. It may be concluded that the structure of both RNAs is highly ordered and that there are large contributions of tertiary interactions. The results are compared with data derived from structural models that were proposed in the literature as well as with data previously published for prokaryotic 5S RNAs. 相似文献
14.
CRAIG T. VAN BELL 《The Journal of eukaryotic microbiology》1985,32(4):640-644
The nucleotide sequences of the 5S rRNAs of Tetrahymena thermophila and two strains of T. pyriformis have been determined to be identical. The 5.8S rRNA sequences have also been determined; these sequences correct several errors in an earlier report. The 5.8S rRNAs of the two species differ at a single position. The sequencing results indicate that the species are of recent common ancestry. Molecular evidence that has been interpreted in the past as suggestive of an ancient divergence has been reviewed and found to be consistent with a T. pyriformis complex radiation beginning approximately 30–40 million years ago. 相似文献
15.
16.
Unique arrangement of coding sequences for 5 S, 5.8 S, 18 S and 25 S ribosomal RNA in Saccharomyces cerevisiae as determined by R-loop and hybridization analysis. 总被引:41,自引:0,他引:41
The arrangement of the coding sequences for the 5 S, 5.8 S, 18 S and 25 S ribosomal RNA from Saccharomyces cerevisiae was analyzed in λ-yeast hybrids containing repeating units of the ribosomal DNA. After mapping of restriction sites, the positions of the coding sequences were determined by hybridization of purified rRNAs to restriction fragments, by R-loop analysis in the electron microscope, and by electrophoresis of S1 nuclease-treated rRNA/rDNA hybrids in alkaline agarose gels. The R-loop method was improved with respect to the length calibration of RNA/DNA duplexes and to the spreading conditions resulting in fully extended 18 S and 25 S rRNA R-loops. The qualitative results are: (1) the 5 S rRNA genes, unlike those in higher eukaryotes, alternate with the genes of the precursor for the 5.8 S, 18 S and 25 S rRNA; (2) the coding sequence for 5.8 S rRNA maps, as in higher eukaryotes, between the 18 S and 25 S rRNA coding sequences. The quantitative results are: (1) the tandemly repeating rDNA units have a constant length of 9060 ± 100 nucleotide pairs with one SstI, two HindIII and, dependent on the strain, six or seven EcoRI sites; (2) the 18 S and 25 S rRNA coding regions consist of 1710 ± 80 and 3360 ± 80 nucleotide pairs, respectively; (3) an 18 S rRNA coding region is separated by a 780 ± 70 nucleotide pairs transcribed spacer from a 25 S rRNA coding region. This is then followed by a 3210 ± 100 nucleotide pairs mainly non-transcribed spacer which contains a 5 S rRNA gene. 相似文献
17.
18.
19.
20.
Structure of the ribosome-associated 5.8 S ribosomal RNA 总被引:3,自引:0,他引:3
The structure of the 5.8 S ribosomal RNA in rat liver ribosomes was probed by comparing dimethyl sulfate-reactive sites in whole ribosomes, 60 S subunits, the 5.8 S-28 S rRNA complex and the free 5.8 S rRNA under conditions of salt and temperature that permit protein synthesis in vitro. Differences in reactive sites between the free and both the 28 S rRNA and 60 S subunit-associated 5.8 S rRNA show that significant conformational changes occur when the molecule interacts with its cognate 28 S rRNA and as the complex is further integrated into the ribosomal structure. These results indicate that, as previously suggested by phylogenetic comparisons of the secondary structure, only the "G + C-rich" stem may remain unaltered and a universal structure is probably present only in the whole ribosome or 60 S subunit. Further comparisons with the ribosome-associated molecule indicate that while the 5.8 S rRNA may be partly localized in the ribosomal interface, four cytidylic acid residues, C56, C100, C127 and C128, remain reactive even in whole ribosomes. In contrast, the cytidylic acid residues in the 5 S rRNA are not accessible in either the 60 S subunit or the intact ribosome. The nature of the structural rearrangements and potential sites of interaction with the 28 S rRNA and ribosomal proteins are discussed. 相似文献