首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhizobium fredii strain USDA257 produces nitrogen-fixing nodules on primitive soybean cultivars such as Peking but fails to nodulate agronomically improved cultivars such as McCall. Transposonmutant 257DH4 has two new phenotypes: it nodulates McCall, and its ability to do so is sensitive to the presence of parental strain U5DA257, i.e. it is subject to competitive nodulation blocking. We have isolated a cosmid containing DNA that corresponds to the site of transposon insertion in 257DH4 and have localized Tn5 on an 8.0 kb EcoRI fragment. The 5596 bp DNA sequence that surrounds the insertion site contains seven open reading frames. Five of these, designated nolBTU, ORF4, and nolV, are closely spaced and of the same polarity. nolWand nolX are of the opposite polarity. The initiation codon for nolW lies 155bp upstream from that of nolB, and it is separated from nolXby 281 bp. The predicted NolT and NolW proteins have putative membrane-spanning regions. The N-terminus of the hypothetical NolW protein also has limited homology to NodH of Rhizobium meliloti, but none of the deduced protein sequences has significant homology to known nodulation gene products. Site-directed mutagenesis with mudll1734 confirms that inactivation of nolB, nolT, nolU, nolV, nolW, or nolX extends host range for nodulation to McCall soybean. This phenotype could not be genetically dissected from sensitivity to competitive nodulation blocking. Expression of nolBTU anti nolX is induced as much as 30-fold by flavonoid signal molecules, even though these genes lack nod-box promoters. Histochemical staining of McCall roots inoculated with nolB–, nolU–, or nolXlacZ fusions verifies that these genes are expressed continuously from preinfection to the stage of the functional nodule. Although a nolU–ORF4–nolV clone hybridizes to a single 8.0 kb EcoRI fragment from 10 strains of R. fredii and broad-host-range Rhizobium sp. NGR234, hybridizing sequences are not detectable in other rhizobia.  相似文献   

2.
Sinorhizobium fredii strain USDA191 forms N-fixing nodules on the soybean (Glycine max L. Merr.) cultivars (cvs) McCall and Peking, but S. fredii strain USDA257 nodulates only cv Peking. We wondered whether specificity in this system is conditioned by the release of unique flavonoid signals from one of the cultivars or by differential perception of signals by the strains. We isolated flavonoids and used nodC and nolX, which are nod-box-dependent and -independent nod genes, respectively, to determine how signals activate genes in the microsymbionts. Seeds of cv McCall and cv Peking contain the isoflavones daidzein, genistein, and glycitein, as well as their glucosyl and malonylglucosyl glycosides. Roots exude picomolar concentrations of daidzein, genistein, glycitein, and coumestrol. Amounts are generally higher in cv Peking than in cv McCall, and the presence of rhizobia markedly influences the level of specific signals. Nanomolar concentrations of daidzein, genistein, and coumestrol induce expression of nodC and nolX in strain USDA257, but the relative nolX-inducing activities of these signals differ in strain USDA191. Glycitein and the conjugates are inactive. Strain USDA257 deglycosylates daidzin and genistin into daidzein and genistein, respectively, thereby converting inactive precursors into active inducers. Although neither soybean cultivar contains unique nod-gene-inducing flavonoids, strain- and cultivar-specific interactions are characterized by distinct patterns of signal release and response.  相似文献   

3.
Flavonoids and isoflavonoids are major plant secondary metabolites that mediate diverse biological functions and exert significant ecological impacts. These compounds play important roles in many essential physiological processes. In addition, flavonoids and isoflavonoids have direct but complex effects on human health, ranging from reducing cholesterol levels and preventing certain cancers to improving women's health. In this study, we cloned and functionally characterized five soybean (Glycine max) chalcone isomerases (CHIs), key enzymes in the phenylpropanoid pathway that produces flavonoids and isoflavonoids. Gene expression and kinetics analysis suggest that the soybean type I CHI, which uses naringenin chalcone as substrate, is coordinately regulated with other flavonoid-specific genes, while the type II CHIs, which use a variety of chalcone substrates, are coordinately regulated with an isoflavonoid-specific gene and specifically activated by nodulation signals. Furthermore, we found that some of the newly identified soybean CHIs do not require the 4′-hydroxy moiety on the substrate for high enzyme activity. We then engineered yeast (Saccharomyces cerevisiae) to produce flavonoid and isoflavonoid compounds. When one of the type II CHIs was coexpressed with an isoflavone synthase, the enzyme catalyzing the first committed step of isoflavonoid biosynthesis, various chalcone substrates added to the culture media were converted to an assortment of isoflavanones and isoflavones. We also reconstructed the flavonoid pathway by coexpressing CHI with either flavanone 3β-hydroxylase or flavone synthase II. The in vivo reconstruction of the flavonoid and isoflavonoid pathways in yeast provides a unique platform to study enzyme interactions and metabolic flux.  相似文献   

4.
5.
The polyphenolic complex of Maackia amurensis, as well as a complex of isoflavonoids from M. amurensis callus cultures, display strong hepatoprotective effects in experimental animal and human studies. To increase the yield of polyphenols in cultures of M. amurensis, calli were transformed with the rolC gene as well as with an empty vector that was used as a control. HPLC analysis revealed that the transgenic cultures produced the same complex of isoflavonoids. The complex consisted of 20 compounds, including isoflavones and their glucosides as well as pterocarpans and their glucosides. The cultures transformed with either the empty vector or the rolC gene construct produced on average 1.22 % dry weight (DW) and 1.39 % DW of isoflavonoids, respectively. Isoflavonoid production in the transformed callus lines carrying the empty vector and the rolC gene construct reached 106 and 146 mg/L, respectively. Moreover, the rolC gene construct promoted cell growth and overall cell productivity. The transgenic callus lines expressing the rolC gene exhibited higher levels of the following six isoflavonoids: daidzein, calycosin, formononetin, 4′-Ο-β-glucopyranosyldaidzin, maackiain and 6′-O-malonyl-3-O-β-D-glucopyranosylmaackiain. However, lower levels of genistin were observed in rolC calli than in those carrying the empty vector.  相似文献   

6.
7.
Leguminous plants have the ability to make their own nitrogen fertilizer by forming a root nodule symbiosis with nitrogen-fixing soil bacteria, collectively called rhizobia. This biological process plays a critical role in sustainable agriculture because it reduces the need for external nitrogen input. One remarkable property of legume–rhizobial symbiosis is its high level of specificity, which occurs at both inter- and intra-species levels and takes place at multiple phases of the interaction, ranging from initial bacterial infection and nodulation to late nodule development associated with nitrogen fixation. Knowledge of the molecular mechanisms controlling symbiotic specificity will facilitate the development of new crop varieties with improved agronomic potential for nitrogen-fixing symbiosis. In this report, we describe fine mapping of the Rj4 locus, a gene controlling nodulation specificity in soybean (Glycine max). The Rj4 allele prevents the host plant from nodulation with many strains of Bradyrhizobium elkanii, which are frequently present in soils of the southeastern USA. Since B. elkanii strains are poor symbiotic partners of soybean, cultivars containing an Rj4 allele are considered favorable. We have delimited the Rj4 locus within a 57-kb genomic region on soybean chromosome 1. The data reported here will facilitate positional cloning of the Rj4 gene and the development of genetic markers for marker-assisted selection in soybean.  相似文献   

8.
Rhizobia are soil bacteria which symbiotically infect legume roots and generate nodules in which they fix atmospheric nitrogen for the plant in exchange for photosynthetically fixed carbon. A crucial aspect of signal exchange between these symbionts is the secretion of phenolic compounds by the host root which induce nodulation gene expression in the bacteria. Stimulation of nod gene expression by host phenolics is required for nodule formation, is biochemically specific at 10-6 M, and is mediated by nodD. We and others have shown that rhizobia display chemotaxis to 10-9 M of the same phenolic compounds. Chemotaxis to inducer phenolics is selectively reduced or abolished by mutations in certain nod genes governing nodulation efficiency or host specificity. Conversely, mutations in rhizobia that affect general motility or chemotaxis have substantial effects on nodulation efficiency and competitiveness. These findings suggest that microbes entering the rhizosphere environment may utilize minor, non-nutrient components in root exudates as signals to guide their movement towards the root surface and elicit changes in gene expression appropriate to this environment.  相似文献   

9.
The synthesis of Rhizobium meliloti Nod signal molecules, encoded by the nod gene products, is finely regulated. A negative control of plasmid-borne nod gene expression is provided by the NoIR repressor encoded by the chromosomal noIR gene. NoIR was previously shown to downregulate the expression of the activator nodD1 gene and the common nodABC operon by binding to an overlapping region of the two promoters adjacent to the n1 nod-box (Kondorosi et al., 1989). We demonstrate here that NoIR also controls the expression of two additional genes, nodD2 and nodM, but does not directly regulate the expression of the host-specific nod genes located downstream of the n2, n3 and n5 nod-boxes. Thus, the nod genes are differentially regulated by NoIR and only those providing common nodulation functions, by determining the synthesis of the core Nod factor structure, are subjected to this negative regulation. Furthermore, NoIR has a strong negative effect on the production of Nod metabolites, the level of which may serve as a fine-tuning mechanism for optimal nodulation, specific to host-plant genotypes. In addition, it elicits preferential synthesis of Nod factors carrying unsaturated C16 fatty acids. Expression of noIR was high both in the free-living bacterium and in the bacteroid and it was downregulated by its own product and by the nod gene inducer luteolin.  相似文献   

10.
LjABCG1, a full-size ABCG subfamily of ATP-binding cassette proteins of a model legume, Lotus japonicus, was reported as a gene highly expressed during the early stages of nodulation, but have not been characterized in detail. In this study we showed that the induction of LjABCG1 expression was remarkable by methyl jasmonate treatment, and reporter gene experiments indicated that LjABCG1 was strongly expressed in the nodule parenchyma and cell layers adjacent to the root vascular tissue toward the nodule. LjABCG1 was suggested to be localized at the plasma membrane based on the fractionation of microsomal membranes as well as separation via aqueous two-phase partitioning. The physiological functions of LjABCG1 in symbiosis and pathogenesis were analyzed in homologous and heterologous systems. LjABCG1 knock-down L. japonicus plants did not show clear phenotypic differences in nodule formation, and not in defense against Pseudomonas syringae, either. In contrast, when LjABCG1 was expressed in the Arabidopsis pdr8-1 mutant, the penetration frequency of Phytophthora infestans, a potato late blight pathogen, was significantly reduced in LjABCG1/pdr8-1 than in pdr8-1 plants. This finding indicated that LjABCG1, at least partially, complemented the phenotype of pdr8 in Arabidopsis, suggesting the multiple roles of this protein in plant-microbe interactions.  相似文献   

11.
12.
13.
14.
We investigated the genetic diversity and symbiotic efficiency of 223 Sinorhizobium sp. isolates sampled from a single Mediterranean soil and trapped with four Medicago truncatula lines. DNA molecular polymorphism was estimated by capillary electrophoresis-single-stranded conformation polymorphism and restriction fragment length polymorphism on five loci (IGSNOD, typA, virB11, avhB11, and the 16S rRNA gene). More than 90% of the rhizobia isolated belonged to the Sinorhizobium medicae species (others belonged to Sinorhizobium meliloti), with different proportions of the two species among the four M. truncatula lines. The S. meliloti population was more diverse than that of S. medicae, and significant genetic differentiation among bacterial populations was detected. Single inoculations performed in tubes with each bacterial genotype and each plant line showed significant bacterium-plant line interactions for nodulation and N2 fixation levels. Competition experiments within each species highlighted either strong or weak competition among genotypes within S. medicae and S. meliloti, respectively. Interspecies competition experiments showed S. meliloti to be more competitive than S. medicae for nodulation. Although not highly divergent at a nucleotide level, isolates collected from this single soil sample displayed wide polymorphism for both nodulation and N2 fixation. Each M. truncatula line might influence Sinorhizobium soil population diversity differently via its symbiotic preferences. Our data suggested that the two species did not evolve similarly, with S. meliloti showing polymorphism and variable selective pressures and S. medicae showing traces of a recent demographic expansion. Strain effectiveness might have played a role in the species and genotype proportions, but in conjunction with strain adaptation to environmental factors.  相似文献   

15.
16.
Phytohormone abscisic acid (ABA) inhibits root nodule formation of leguminous plants. LjGlu1, a β-1,3-glucanase gene of Lotus japonicus, has been identified as an ABA responsive gene. RNA interference of LjGlu1 increased nodule number. This suggests that LjGlu1 is involved in the regulation of nodule formation. Host legumes control nodule number by autoregulation of nodulation (AON), in which the presence of existing root nodules inhibits further nodulation. For further characterization of LjGlu1, we focused on the expression of LjGlu1 in relation to AON. In a split-root system, LjGlu1 expression peaked when AON was fully induced. Hairy roots transformed with LjCLE-RS1, a gene that induces AON, were generated. Expression of LjGlu1 was greater in the transgenic roots than in untransformed roots. LjGlu1 was not induced in a hypernodulating mutant inoculated with Mesorhizobium loti. These results suggest that the expression of LjGlu1 is involved in the system of AON. However, neither hypernodulation nor enlarged nodulation zone was observed on the transgenic hairy roots carrying LjGlu1-RNAi, suggesting that LjGlu1 is not a key player of AON. Recombinant LjGlu1 showed endo-β-1,3-glucanase activity. LjGlu1-mOrange fusion protein suggested that LjGlu1 associated with M. loti on the root hairs. Exogenous β-1,3-glucanase inhibited infection thread formation by both the wild type and the mutant, and nodule numbers were reduced. These results suggest that LjGlu1 is expressed in response to M. loti infection and functions outside root tissues, resulting in the inhibition of infection.  相似文献   

17.
Bradyrhizobium strains isolated in Europe from Genisteae and serradella legumes form a distinct lineage, designated clade II, on nodulation gene trees. Clade II bradyrhizobia appear to prevail also in the soils of Western Australia and South Africa following probably accidental introduction with seeds of their lupine and serradella hosts. Given this potential for dispersal, we investigated Bradyrhizobium isolates originating from a range of native New World lupines, based on phylogenetic analyses of nodulation (nodA, nodZ, noeI) and housekeeping (atpD, dnaK, glnII, recA) genes. The housekeeping gene trees revealed considerable diversity among lupine bradyrhizobia, with most isolates placed in the Bradyrhizobium japonicum lineage, while some European strains were closely related to Bradyrhizobium canariense. The nodA gene tree resolved seven strongly supported groups (clades I to VII) that correlated with strain geographical origins and to some extent with major Lupinus clades. All European strains were placed in clade II, whereas only a minority of New World strains was placed in this clade. This work, as well as our previous studies, suggests that clade II diversified predominately in the Old World, possibly in the Mediterranean. Most New World isolates formed subclade III.2, nested in a large “pantropical” clade III, which appears to be New World in origin, although it also includes strains originating from nonlupine legumes. Trees generated using nodZ and noeI gene sequences accorded well with the nodA tree, but evidence is presented that the noeI gene may not be required for nodulation of lupine and that loss of this gene is occurring.  相似文献   

18.
Alzheimer disease (AD) is a devastating neurodegenerative disease affecting more than five million Americans. In this study, we have used updated genetic linkage data from chromosome 10 in combination with expression data from serial analysis of gene expression to choose a new set of thirteen candidate genes for genetic analysis in late onset Alzheimer disease (LOAD). Results in this study identify the KIAA1462 locus as a candidate locus for LOAD in APOE4 carriers. Two genes exist at this locus, KIAA1462, a gene associated with coronary artery disease, and “rokimi”, encoding an untranslated spliced RNA The genetic architecture at this locus suggests that the gene product important in this association is either “rokimi”, or a different isoform of KIAA1462 than the isoform that is important in cardiovascular disease. Expression data suggests that isoform f of KIAA1462 is a more attractive candidate for association with LOAD in APOE4 carriers than “rokimi” which had no detectable expression in brain.  相似文献   

19.
Deregulated expression of clock gene per2 has previously been associated with progression of cancer. The aim of the present study was to identify genes related to per2 expression and involved in cell cycle control. Patients surgically treated for colorectal carcinoma with up-regulated and down-regulated per2 expression in cancer versus adjacent tissue were studied. Total RNA from cancer tissue of these patients was used to specify genes associated with altered per2 expression using the Human Cell Cycle RT2 profiler PCR array system. We identified seven genes positively correlated (hus1, gadd45α, rb1, cdkn2a, cdk5rp1, mre11a, sumo1) and two genes negatively correlated (cdc20, birc5) with per2 expression. Expression of these seven genes was subsequently measured by real time PCR in all patients of the cohort. Patients were divided into three groups according to TNM classification. We observed an increase in gene expression in cancer tissue compared to adjacent tissue in the first group of patients in all genes measured. Expression of genes positively associated with per2 gene expression was dependent on tumor staging and changes were observed preferentially in cancer tissue. For genes negatively associated with per2 expression we also detected changes in expression dependent on tumor staging. Expression of cdc20 and birc5 was increasing in the proximal tissue and decreasing in the cancer tissue. These results implicate functional involvement of per2 in the process of carcinogenesis via newly uncovered genes. The relevancy of gene expression for determination of diagnosis and prognosis should be considered in relation to tumor staging.  相似文献   

20.
An early nodulin cDNA, dd23b, was isolated from white clover root tissue by differential display RT-PCR. Its full-length sequence of 340 nucleotides encodes a predicted 72-amino-acid protein of molecular mass 8.3 kDa, with a polypeptide region containing cysteine pairs spaced in the manner of a cysteine cluster protein. This feature, which is shared by some other late and early nodulins from pea and broad bean, suggests a role in metal ion binding and membrane transport. Temporal and spatial expression patterns were determined during infection and nodulation by the homologous microsymbiont. No expression was found in unchallenged root tissue over a 7-day sampling period. Expression was first detectable in roots by RT-PCR 6 h post-inoculation with Rhizobium leguminosarum biovar trifolii, placing dd23b among the earliest nodulins to be detected to date. In root nodules, expression occurred primarily in the central symbiotic zone, but also in some host cells within the infection zone. Addition of purified wild-type chitolipooligosaccharide Nod factor to axenic white clover roots induced dd23b expression, providing further evidence for the role of this gene in the early plant response to infection by rhizobia. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号