首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monocytes and macrophages play a major role in atherosclerosis development. Previously, we found that triglyceride (TG) promoted cell death of PMA-differentiated THP-1 macrophages. In this study, we compared the responsiveness of THP-1 monocytes and PMA-differentiated THP-1 macrophages to TNF-α-induced cell death. We found that, whereas THP-1 monocytes were TNF-α-resistant, THP-1 macrophages were sensitive to TNF-α-induced cell death. THP-1 monocytes treated with TG underwent cell death beginning at 24 h and addition of TNF-α further increased cell death. Based on these observations, we hypothesized that TG-induced differentiation of THP-1 monocytes into THP-1 macrophages, subsequently allowing sensitivity to TNF-α. To determine if TG could induce differentiation of THP-1 monocytes into THP-1 macrophages, we examined the mRNA expression levels of the macrophage-specific markers, CD11b, CD18, CD36 and CD68, by RT-PCR analysis. Our results show that expression of CD11b, CD36 and CD68 increased in TG-treated THP-1 monocytes in a dose- and time-dependent manner; furthermore, TNF-α expression was upregulated in TG-treated THP-1 monocytes. We have concluded that TG induces differentiation of THP-1 monocytes into macrophages concomitant with the production of TNF-α and increased sensitivity to TNF-α-dependent cell death.  相似文献   

2.
BackgroundC1q/tumour necrosis factor-related protein 3 (CTRP3) plays important roles in metabolism and inflammatory responses in various cells and tissues. However, the expression and function of CTRP3 in salivary glands have not been explored.MethodsThe expression and distribution of CTRP3 were detected by western blot, polymerase chain reaction, immunohistochemical and immunofluorescence staining. The effects of CTRP3 on tumour necrosis factor (TNF)-α-induced apoptosis and barrier dysfunction were detected by flow cytometry, western blot, co-immunoprecipitation, and measurement of transepithelial resistance and paracellular tracer flux.ResultsCTRP3 was distributed in both acinar and ductal cells of human submandibular gland (SMG) and was primarily located in the ducts of rat and mouse SMGs. TNF-α increased the apoptotic rate, elevated expression of cleaved caspase 3 and cytochrome C, and reduced B cell lymphoma-2 (Bcl-2) levels in cultured human SMG tissue and SMG-C6 cells, and CTRP3 further enhanced TNF-α-induced apoptosis response. Additionally, CTRP3 aggravated TNF-α-increased paracellular permeability. Mechanistically, CTRP3 promoted TNF-α-enhanced TNF type I receptor (TNFR1) expression, inhibited the expression of cellular Fas-associated death domain (FADD)-like interleukin-1β converting enzyme inhibitory protein (c-FLIP), and increased the recruitment of FADD with receptor-interacting protein kinase 1 and caspase 8. Moreover, CTRP3 was significantly increased in the labial gland of Sjögren's syndrome patients and in the serum and SMG of nonobese diabetic mice.ConclusionsThese findings suggest that the salivary glands are a novel source of CTRP3 synthesis and secretion. CTRP3 might promote TNF-α-induced cell apoptosis through the TNFR1-mediated complex II pathway.  相似文献   

3.
Tumor necrosis factor-α (TNF-α) is suggested to induce mitochondrial dysfunction and apoptosis of renal tubular epithelial cells that possibly exacerbates renal function in chronic kidney disease (CKD). Here we investigated whether suppressor of cytokine signaling-1 (SOCS-1), an inhibitor of cytokine signaling, was involved in TNF-α-induced human renal tubular epithelial cells (HKCs) oxidative stress and apoptosis. TNF-α promoted the protein and mRNA expression of SOCS-1 in a time and dose dependent manner, along with increased cell apoptosis and activation of apoptosis signal regulating kinase-1(ASK1) in HKCs. Furthermore, overexpression of SOCS-1 in HKCs reduced TNF-α-mediated oxidative stress and apoptosis. Meanwhile, We also found that overexpression of SOCS-1 could regulate the activity of JAK/STAT signaling pathway. In addition, a specific JAK2 inhibitor, AG490, that both attenuated TNF-α-induced oxidative stress, also reduced apoptosis. Taken together, overexpression of SOCS-1 prevented TNF-α-mediated cell oxidative stress and apoptosis may be via suppression of JAK/STAT signaling pathway activation in HKCs.  相似文献   

4.
IFN1@ (interferon, type 1, cluster, also called IFNα) has been extensively studied as a treatment for patients with chronic myeloid leukemia (CML). The mechanism of anticancer activity of IFN1@ is complex and not well understood. Here, we demonstrate that autophagy, a mechanism of cellular homeostasis for the removal of dysfunctional organelles and proteins, regulates IFN1@-mediated cell death. IFN1@ activated the cellular autophagic machinery in immortalized or primary CML cells. Activation of JAK1-STAT1 and RELA signaling were required for IFN1@-induced expression of BECN1, a key regulator of autophagy. Moreover, pharmacological and genetic inhibition of autophagy enhanced IFN1@-induced apoptosis by activation of the CASP8-BID pathway. Taken together, these findings provide evidence for an important mechanism that links autophagy to immunotherapy in leukemia.  相似文献   

5.
Chronic myeloid leukemia is an incurable white blood cell disease with slow progression which affects myeloid stem cells. In the course of chromosome 22 shortening a fusion oncogene arises whose product, a Bcr-Abl oncoprotein, is a continuously expressed tyrosine kinase protein. Beside the opportunity of chemotherapy, stem cell therapy and interferon-a therapy, the application of tyrosine kinase inhibitors also became widespread in the treatment of the disease. Patients bearing the T315I point mutation, however, show resistance against all tyrosine kinase inhibitors, which can be managed by dose escalation or the combination of therapies. The discovery of RNA interference or gene silencing put the therapeutic opportunity of CML in new light. The in vitro application of anti-bcr-abl siRNA showed promising results in the causal treatment of the disease, feasible for identification of new genes associated to the disease, but we do not have sufficient evidence for the safety and efficacy of this method in human therapy.  相似文献   

6.
Weng K  Xie X  Qiu G  Gu W 《Cytotechnology》2012,64(1):75-81
Dendritic cells (DCs) have been successfully induced in vitro from chronic myeloid leukemia (CML) cells, which may provide a promising immunotherapeutic protocol for CML. To facilitate the optimization of DCs-based vaccination protocols, we investigated the efficiency of in vitro generation of DCs from bone marrow mononuclear cells of CML patients by clinical reagents of GM-CSF and IFN-α. Bone marrow mononuclear cells were isolated from eight CML patients and CML-DCs were generated in the presence of different cytokines (Group A: GM-CSF for research and IL-4 for research; Group B: GM-CSF for injection and IFN-α for injection) in RMPI-1640 medium containing 10% human AB serum. After 8 days, the morphologic features of CML-DCs were observed and their immunophenotypes were analyzed by flow cytometry. The activity of CML-DCs was determined by evaluating their ability to stimulate allogeneic mixed lymphocyte reaction (allo-MLR) and anti-leukemic cytotoxic T lymphocytes (CTLs). The culture protocols were successful in generating functional CML-DCs from all the CML patients as evidenced by the significant upregulation of CD80, CD86, CD83 HLA-DR and CD1a compared to pre-cultured (p < 0.05), and increased allogeneic T cell stimulating proliferation capacity (p < 0.05). CML-DCs could stimulate a specific anti-leukemia response. In summary, we demonstrate that the combination of clinical reagents GM-CSF and IFN-α induced the generation of DCs that have the ability to stimulate a specific anti-leukemia CTLs response in vitro, indicating their feasibility for clinical vaccination protocols for CML patients.  相似文献   

7.
8.
9.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inducer of cancer cell death that holds promise in cancer therapy. Cancer cells are more susceptible than normal cells to the cell-death-inducing effects of TRAIL. However, a variety of cancer cells are resistant to TRAIL through complex mechanisms. Here, we investigate the effects of inhibition of eukaryotic initiation factor 2 subunit α (eIF2α) dephosphorylation on TRAIL-induced apoptosis in hepatoma cells. Treatment of hepatoma cells with salubrinal, an inhibitor of eIF2α dephosphorylation, enhances TRAIL-induced eIF2α phosphorylation, CCAAT/enhancer-binding protein homologous protein (CHOP) expression and caspase activation. Salubrinal enhances TRAIL-induced apoptosis, which could be abrogated by caspase inhibitor. Overexpression of phosphomimetic eIF2α (S51D) enhances TRAIL-induced CHOP expression, caspase 7 and PARP cleavage and apoptosis. By contrast, overexpression of phosphodeficient eIF2α (S51A) abrogates the stimulation of TRAIL-induced apoptosis by salubrinal. Moreover, knockdown of growth arrest and DNA damage-inducible protein 34 (GADD34), which recruits protein phosphatase 1 to dephosphorylate eIF2α, enhances TRAIL-induced eIF2α phosphorylation, CHOP expression, caspase activation and apoptosis. Furthermore, the sensitization of hepatoma cells to TRAIL by salubrinal is dependent on CHOP. Knockdown of CHOP abrogates the stimulation of TRAIL-induced caspase activation and apoptosis by salubrinal. Combination of salubrinal and TRAIL leads to increased expression of Bim, a CHOP-regulated proapoptotic protein. Bim knockdown blunts the stimulatory effect of salubrinal on TRAIL-induced apoptosis. Collectively, these findings suggest that inhibition of eIF2α dephosphorylation may lead to synthetic lethality in TRAIL-treated hepatoma cells.  相似文献   

10.
Selective induction of apoptosis in tumor cells is important for treating patients with cancer. Because oxidative stress plays an important role in the process of apoptosis, we studied the effect of α-tocopheryl succinate (VES) on the fate of cultured human promyelocytic leukemia cells (HL-60). The presence of fairly low concentrations of VES inhibited the growth and DNA synthesis of HL-60 cells, and also induced their apoptosis via a mechanism that was inhibited by z-VAD-fluoromethylketone (z-VAD-fmk), an inhibitor of pan-caspases. VES activated various types of caspases, including caspase-3, 6, 8, and 9, but not caspase-1. VES triggered the reaction leading to the cleavage of Bid, a member of the death agonist Bcl-2 family, and released cytochrome c (Cyt.c) from the mitochondria into the cytosol by a z-VAD-fmk-inhibitable mechanism. VES transiently increased the intracellular calcium level [Ca2+]i and stimulated the release of Cyt.c in the presence of inorganic phosphate (Pi). However, high concentrations of VES (~100 μM) hardly induced swelling of isolated mitochondria but depolarized the mitochondrial membrane potential by a cyclosporin A (CsA)-insensitive mechanism. These results indicate that VES-induced apoptosis of HL-60 cells might be caused by activation of the caspase cascade coupled with modulation of mitochondrial membrane function.  相似文献   

11.
12.
To study the inhibitory effects of caspase-3 mRNA antisense oligodeoxynucleotides (ASODNs) on apoptosis, we designed four ASODNs targeting different regions of caspase-3 mRNA and transfected them into human leukemia HL-60 cells. The transfected cells were given 10 Gy γ-irradiation followed by incubation for 18 h and measurement of apoptosis and caspase-3 expression. Our results showed that ASODN-2 targeting the 5′ non-coding region of sites –62 to –46, and ASODN-3 targeting the 5′ coding region of sites –1 to 16, both reduced apoptosis measured by gel electrophoresis and flow cytometry. Hoechst 33258 staining and TUNEL assay revealed that apoptotic indexes in the ASODN-2 and ASODN-3 groups were significantly lower than those in the untransfected and mismatched oligodeoxynucleotide (MODN) groups. Immunocytochemistry, Western blotting and RT-PCR showed that expression levels of caspase-3 protein and mRNA in both ASODN-2 and ASODN-3 groups were decreased compared with those in the untransfected and MODN groups. In conclusion, caspase-3 mRNA ASODNs can inhibit γ-radiation-induced apoptosis of HL-60 cells and reduce expression of caspase-3 protein and mRNA. The results suggest that antisense approach may be useful for therapeutic treatment of certain neurodegenerative diseases in which apoptosis is involved. The work was supported by a grant from the National Natural Science Foundation of China (No. 39880008).  相似文献   

13.
14.
15.
16.
Mao X  Yu CR  Li WH  Li WX 《Cell research》2008,18(8):879-888
This study examined the signaling events induced by shikonin that lead to the induction of apoptosis in Bcr/ Abl-positive chronic myelogenous leukemia (CML) cells (e.g., K562, LAMA84). Treatment of K562 cells with shikonin (e.g., 0.5 pM) resulted in profound induction of apoptosis accompanied by rapid generation of reactive oxygen species (ROS), striking activation of c-Jun-N-terminal kinase (JNK) and p38, marked release of the mitochondrial proteins cytochrome c and Smac/DIABLO, activation of caspase-9 and -3, and cleavage of PARP. Scavenging of ROS completely blocked all of the above-mentioned events (i.e., JNK and p38 phosphorylation, cytochrome c and Smac/DIABLO release, caspase and PARP cleavage, as well as the induction of apoptosis) following shikonin treatment. Inhibition of JNK and knock-down of JNK1 significantly attenuated cytochrome c release, caspase cleavage and apoptosis, but did not affect shikonin-mediated ROS production. Additionally, inhibition of caspase activation completely blocked shikonin-induced apoptosis, but did not appreciably modify shikonin-mediated cytochrome c release or ROS generation. Altogether, these findings demonstrate that shikonin-induced oxidative injury operates at a proximal point in apoptotic signaling cascades, and subsequently activates the stress-related JNK pathway, triggers mitochondrial dysfunction, cytochrome c release, and caspase activation, and leads to apoptosis. Our data also suggest that shikonin may be a promising agent for the treatment of CML, as a generator of ROS.  相似文献   

17.
Paeoniflorin (PF) is one of the main effective components extracted from the root of Paeonia lactiflora, which has been used clinically to treat hepatitis in traditional Chinese medicine, but the details of the underlying mechanism remain unknown. The present study was designed to investigate the mechanism of protective effect of PF on d-galactosamine (GalN) and tumor necrosis factor-α (TNF-α)-induced cell apoptosis using human L02 hepatocytes. Our results confirmed that PF could attenuate GalN/TNF-α-induced apoptotic cell death in a dose-dependent manner. The disruption of mitochondrial membrane potential and the disturbance of intracellular Ca2+ concentration were also recovered by PF. Western blot analysis revealed that GalN/TNF-α induced the activation of a number of signature endoplasmic reticulum (ER) stress and mitochondrial markers, while PF pre-treatment had a marked dose-dependent suppression on them. Additionally, the anti-apoptotic effect of PF was further evidenced by the inhibition of caspase-3/9 activities in L02 cells. These findings suggest that PF can effectively inhibit hepatocyte apoptosis and the underlying mechanism is related to the regulating mediators in ER stress and mitochondria-dependent pathways.  相似文献   

18.
The BCR–ABL fusion gene in chromosome translocation, t (9; 22), and its product, p210BCR/ABL oncogenic tyrosine kinase, is the underlying molecular mechanism that leads to the development of CML. Quantitative detection of BCR–ABL fusion gene has become a reliable approach to diagnose and monitor CML. The aim of this study was to evaluate a Roche t (9; 22) kit in CML diagnosis, monitoring treatment responses, and identification of relapse. Using BCR–ABL fusion gene-expressing K562 cells, a series of standard samples were prepared and used to establish a curve for the calculation of BCR–ABL fusion gene expression in patient samples. Our results indicate that PCR detection system with aforementioned kit has good reproducibility. In addition, the relative concentration of BCR–ABL measured by PCR was in agreement with the patient’s response to the Imatinib treatment and bone marrow morphology remission. Furthermore, we found that the relative concentration of BCR–ABL fusion gene increased 1–3 months before CML relapse was clinically and cytogenetically diagnosed, suggesting that the PCR-based BCR–ABL fusion gene detection with t (9; 22) kit is able to diagnose the recurrence of CML at least 1 month earlier than the classic cytogenetic analysis. In conclusion, detection of BCR–ABL fusion gene expression in CML using Roche t (9; 22) kit has great clinical value in the primary diagnosis, monitoring treatment responses, and identification of relapse in CML patients.  相似文献   

19.
Activation of adaptive mechanisms plays a crucial role in cancer progression and drug resistance by allowing cell survival under stressful conditions. Therefore, inhibition of the adaptive response is considered as a prospective therapeutic strategy. The PERK-eIF2α phosphorylation pathway is an important arm of the unfolded protein response (UPR), which is induced under conditions of endoplasmic reticulum (ER) stress. Our previous work showed that ER stress is induced in chronic myeloid leukemia (CML) cells. Herein, we demonstrate that the PERK-eIF2α phosphorylation pathway is upregulated in CML cell lines and CD34+ cells from CML patients and is associated with CML progression and imatinib resistance. We also show that induction of apoptosis by imatinib results in the downregulation of the PERK-eIF2α phosphorylation arm. Furthermore, we demonstrate that inactivation of the PERK-eIF2α phosphorylation arm decreases the clonogenic and proliferative capacities of CML cells and sensitizes them to death by imatinib. These findings provide evidence for a pro-survival role of PERK-eIF2α phosphorylation arm that contributes to CML progression and development of imatinib resistance. Thus, the PERK-eIF2α phosphorylation arm may represent a suitable target for therapeutic intervention for CML disease.  相似文献   

20.
Activation of adaptive mechanisms plays a crucial role in cancer progression and drug resistance by allowing cell survival under stressful conditions. Therefore, inhibition of the adaptive response is considered as a prospective therapeutic strategy. The PERK-eIF2α phosphorylation pathway is an important arm of the unfolded protein response (UPR), which is induced under conditions of endoplasmic reticulum (ER) stress. Our previous work showed that ER stress is induced in chronic myeloid leukemia (CML) cells. Herein, we demonstrate that the PERK-eIF2α phosphorylation pathway is upregulated in CML cell lines and CD34+ cells from CML patients and is associated with CML progression and imatinib resistance. We also show that induction of apoptosis by imatinib results in the downregulation of the PERK-eIF2α phosphorylation arm. Furthermore, we demonstrate that inactivation of the PERK-eIF2α phosphorylation arm decreases the clonogenic and proliferative capacities of CML cells and sensitizes them to death by imatinib. These findings provide evidence for a pro-survival role of PERK-eIF2α phosphorylation arm that contributes to CML progression and development of imatinib resistance. Thus, the PERK-eIF2α phosphorylation arm may represent a suitable target for therapeutic intervention for CML disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号