共查询到20条相似文献,搜索用时 0 毫秒
1.
Kozako T Matsumoto N Kuramoto Y Sakata A Motonagare R Aikawa A Imoto M Toda A Honda S Shimeno H Soeda S 《FEBS letters》2012,586(7):1067-1072
Vasohibin is thought to be an important negative feedback regulator of angiogenesis that is selectively induced in endothelial cells by VEGF. Here, we assessed the role of vasohibin on HIF-1α expression under oxidative stress induced by hydrogen peroxide (H2O2) in HUVEC. VEGF induced significant cell growth that was associated with an increase in vasohibin expression. Following H2O2-pretreatment, VEGF further increased cell growth but this was contrastingly associated with a decrease in vasohibin expression when compared with VEGF alone. Interestingly, vasohibin inhibited cell proliferation through degradation of HIF-1α expression during H2O2-pretreatment. Furthermore, vasohibin elevated the expression of prolyl hydroxylase (PHD). These results suggest that vasohibin plays crucial roles as a negative feedback regulator of angiogenesis through HIF-1α degradation via PHD. 相似文献
2.
Atherosclerosis is a chronic inflammatory disease of the arterial wall. Inflammation causes endothelial injury and dysfunction, which is an initial step of atherosclerosis. Fibrinopeptide A (FPA) is a biomarker of the activation of the coagulation system, and a high concentration of FPA in the blood occurs in patients with ischemic cardiocerebrovascular diseases. The present research observed that FPA stimulated the generation of C-reactive protein (CRP), IL-1β, and IL-6 in human umbilical vascular endothelial cells (HUVECs); and anti-IL-1 β and anti-IL-6 neutralizing antibodies did not alter FPA-induced CRP expression in HUVECs. The subchronic administration of FPA into rats increased the plasma FPA and CRP levels. Further studies showed that FPA stimulated superoxide anion generation, activated ERK1/2 and p38, promoted nuclear factor κB (NF-κB) nuclear translocation, and raised the NF-κB level in the nuclei of HUVECs. Antioxidant N-acetylcysteine (NAC), complex II inhibitor thenoyltrifluoroacetone (TTFA), and NADPH oxidase inhibitor diphenyleneiodonium (DPI) inhibited FPA-stimulated generation of superoxide anion, and NAC reduced FPA-induced expressions of the phosphorylated ERK1/2 and p38. NAC, TTFA, DPI, inhibitors of ERK1/2, p38, and NF-κB all downregulated FPA-induced CRP expression. These results indicate that FPA induces CRP expression in HUVECs via the ROS-ERK1/2/p38-NF-κB signal pathway. Moreover, this is the first report that FPA produces a proinflammatory effect on the vascular endothelial cells. 相似文献
3.
《Free radical research》2013,47(9):1018-1027
AbstractHeme oxygenase-1 (HO-1) is a stress-responsive enzyme that has antioxidant and cytoprotective functions. However, HO-1 has oncogenic functions in cancerous or transformed cells. In the present work, we investigated the effects of HO-1 on the expression of p53 induced by 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in human breast cancer (MCF-7) cells. Treatment of MCF-7 cells with 15d-PGJ2 led to time-dependent increases in the expression of p53 as well as HO-1. Upregulation of p53 expression by 15d-PGJ2 was abrogated by si-RNA knock-down of HO-1. In MCF-7 cells transfected with HO-1 si-RNA, 15d-PGJ2 failed to induce expression of p53 as well as HO-1. In addition, HO-1 inducers enhanced the p53 expression. We speculated that iron, a by-product of HO-1-catalyzed reactions, could mediate 15d-PGJ2–induced p53 expression. Upregulation of p53 expression by 15d-PGJ2 was abrogated by the iron chelator desferrioxamine in MCF-7 cells. Iron released from heme by HO-1 activity is mostly in the Fe2+ form. When MCF-7 cells were treated with the Fe2+-specific chelator phenanthroline, 15d-PGJ2–induced p53 expression was attenuated. In addition, levels of the Fe-sequestering protein H-ferritin were elevated in 15d-PGJ2-treated MCF-7 cells. In conclusion, upregulation of p53 and p21 via HO-1 induction and subsequent release of iron with accumulation of H-ferritin may confer resistance to oxidative damage in cancer cells frequently challenged by redox-cycling anticancer drugs. 相似文献
4.
5.
6.
7.
Ying Lu Xiao Zhu Gan-Xiong Liang Rong-Rong Cui Yuan Liu Shan-Shan Wu Qiu-Hua Liang Guan-Ying Liu Yi Jiang Xiao-Bo Liao Hui Xie Hou-De Zhou Xian-Ping Wu Ling-Qing Yuan Er-Yuan Liao 《Amino acids》2012,43(5):2125-2136
Apelin receptor (APJ) deficiency has been reported to be preventive against atherosclerosis. However, the mechanism of this effect remains unknown. In this study, quantitative real-time RT-PCR, Western blotting and ELISA analyses revealed a significant increase in the expression of intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) in human umbilical vein endothelial cells (HUVECs) treated with apelin. Inhibitors of cellular signal transduction molecules were used to demonstrate involvement of nuclear factor kappa-B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways in apelin–APJ-induced activation of adhesion molecules and chemokines. Inhibition of APJ expression by RNA interference abrogated apelin-induced expression of adhesion molecules and chemokines and apelin-stimulated cellular signal transduction in HUVECs. The apelin–APJ system in endothelial cells is involved in the expression of adhesion molecules and chemokines, which are important for the initiation of endothelial inflammation-related atherosclerosis. Therefore, apelin–APJ and the cell signaling pathways activated by this system in endothelial cells may represent targets for therapy of atherosclerosis. 相似文献
8.
Kawanami D Matoba K Kanazawa Y Ishizawa S Yokota T Utsunomiya K 《Biochemical and biophysical research communications》2011,411(4):798-803
Thrombin has been shown to increase expression of chemokines such as monocyte chemoattractant protein 1 (MCP-1) in endothelial cells, leading to the development of atherosclerosis. However, the precise mechanism of this induction remains unknown. In the present study, we investigated whether the small G protein RhoA, and its effector, Rho-kinase are involved in MCP-1 induction by thrombin in endothelial cells. Y-27632, a specific Rho-kinase inhibitor, potently inhibited MCP-1 induction by thrombin. Y-27632 significantly decreased the chemotactic activity of thrombin-stimulated supernatants of endothelial cells on monocytes. Importantly, fasudil, a specific Rho-kinase inhibitor, attenuated MCP-1 gene expression in the aorta of db/db mice. Y-27632 attenuated thrombin-mediated phosphorylation of p38MAPK and p65, indicating that Rho-kinase mediates thrombin-induced MCP-1 expression through p38MAPK and NF-κB activation. Our findings demonstrate that the Rho/Rho-kinase signaling pathway plays a critical role in thrombin-mediated MCP-1 expression and function, and suggest that Rho/Rho-kinase may be an important target in the development of new therapeutic strategies for atherosclerosis. 相似文献
9.
10.
Xu Y Zhang C Wang N Ling F Li P Gao Y Hua W 《Biochemical and biophysical research communications》2011,404(4):1060-1064
Adiponectin exerts anti-diabetic and anti-atherogenesis properties through its 2 receptors (AdipoR1 and AdipoR2). However, the signaling pathways responsible for the anti-inflammatory effects of adiponectin are largely unknown. In this study, we identified the lymphotoxin (LT)-β receptor (LTBR) as an interacting partner of human AdipoR1 by using a yeast two-hybrid screening. The interaction between LTBR and AdipoR1 was confirmed by co-immunoprecipitation and co-localization analysis. Furthermore, adiponectin incubation inhibited lymphotoxin-induced NF-κB activation and the expression of adhesion molecules in human umbilical vein endothelial cells. These results indicated that AdipoR1 interacted with LTBR and mediated the inhibition of LTBR-activated NF-κB pathway. 相似文献
11.
Duan J Dai S Fang CX Sun R Shavali S Sharma SK Ebadi M Ren J 《Cell biochemistry and biophysics》2006,45(2):137-145
Although the issue of estrogen replacement therapy on cardiovascular health is debatable, it has presumable benefits for endothelial function in postmenopausal women. However, the fear of breast cancer has intimidated women contemplating estrogen treatment and limited its long-term application. An effective alternative remedy not associated with breast carcinoma is in serious demand. This study was designed to examine the effect of phytoestrogen alpha-zearalanol (alpha-ZAL) and 17beta-estradiol (E2) on nitric oxide (NO) and endothelin (ET)-1 levels, apoptosis, and apoptotic enzymes in human umbilical vein endothelial cells (HUVEC). HUVEC cells were challenged for 24 h with homocysteine (10-3 M), an independent risk factor for a variety of vascular diseases, in the presence of alpha-ZAL or E2 (10-9 to 10-6 M). Release of NO and ET-1 were measured with enzyme immunoassay. Apoptosis was evaluated by fluorescence-activated cell sorter analysis. Expression of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), Bax, and Bcl-2 were determined using Western blot. NOS activity was evaluated with 3H-arginine to 3H-citrulline conversion. Our results indicated that Hcy significantly reduced NO production, NOS activity, enhanced ET-1/NO ratio and apoptosis, upregulated iNOS, Bax, and downregulated eNOS, Bcl-2 expression. These effects were significantly attenuated by alpha-ZAL and E2. ZAL displayed a similar potency compared with E2 in antagonizing Hcy-induced effects. In summary, these results suggested that alpha-ZAL may effectively preserve Hcy-induced decrease in NO, increase in ET-1/NO ratio and apoptosis, which contributes to protective effects of phytoestrogens on endothelial function. 相似文献
12.
Oxidative stress plays a critical role in the pathogenesis of diabetic vascular complications. Trans-δ-viniferin (TVN), a polyphenolic compound, has recently attracted much attention as an antioxidant exhibiting a hypoglycemic potential. In the present study, we aimed at investigating the protective effect of TVN against high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVECs) and the potential mechanism involved. We found that TVN attenuated reactive oxygen species (ROS) production, increased catalase (CAT) activity and decreased malondialdehyde (MDA) levels to ameliorate cell survival induced by 35 mM glucose. Meanwhile, it inhibited high glucose-induced apoptosis by maintaining Ca2+ and preserving mitochondrial membrane potential (MMP) levels. The immunoblot analysis indicated that TVN efficiently regulated the cleavage of caspase family, p53, Bax and Bcl-2, all mediated by SIRT1. Furthermore, the increased level of SIRT1 induced by TVN was inhibited by nicotinamide and siRNA-medicated SIRT1 silencing (si-SIRT1), thereby confirming the significant role of SIRT1 in these events. In conclusion, our results indicated that TVN efficiently reduced oxidative stress and maintained mitochondrial function related with activating SIRT1 in high glucose-treated HUVECs. It suggested that TVN is pharmacologically promising for treating diabetic cardiovascular complications. 相似文献
13.
Penli Zhu Gang Chen Tingting You Jin Yao Qiqin Jiang Xu Lin Xiaoyan Shen Yufang Qiao Lixiang Lin 《Molecular and cellular biochemistry》2010,338(1-2):123-131
Free fatty acids (FFA)-induced proliferation and apoptosis was studied in human umbilical vein endothelial cells (HUVECs). A recombinant adenovirus containing a RNAi cassette targeting the GSK-3β gene was produced and its silencing effect on GSK-3β gene was detected by Western blot analysis and immunohistochemistry assay in HUVECs. The effect of the RNAi on the protein level of β-catenin was explored by transfecting the RNAi adenovirus to inhibit the expression of GSK-3β protein. The subsequent effect on the Wnt/GSK-3β/β-catenin signal pathway and on proliferation and apoptosis of HUVECs cultured with FFAs, was analyzed by BrdU assay, Annexin V-FITC/PI Apoptosis Detection Kit, and 4′,6-diamidino-2- phenylindole(DAPI) to explore the possible connection between the signaling pathway and FFA-induced proliferation and apoptosis. The Western blot results showed that the expression of GSK-3β protein in HUVECs could be inhibited efficiently by the RNAi adenovirus, and that the protein level of β-catenin was increased by RNAi adenovirus transfection. The results of the BrdU assay suggested that knockdown of GSK-3β with the RNAi adenovirus may stimulate the proliferation of HUVECs. Apoptosis was observed in HUVECs exposed to FFAs (0.75 mmol/L) for 72 h, and this effect could be partly reversed when interfering with the RNAi adenovirus. It may be concluded that the RNAi adenovirus specific to GSK-3β may partly protect HUVECs from apoptosis induced by FFAs, probably through the up-regulation of the Wnt/β-catenin signal pathway. 相似文献
14.
Ki Young Kim Jin Hee Ahn Hyae Gyeong Cheon 《Molecular and cellular biochemistry》2011,358(1-2):375-385
Peroxisome proliferator-activated receptor ?? (PPAR??) activation has anti-angiogenic and apoptotic effects in endothelial cells. Here, we investigated the mechanisms of the anti-angiogenic action of a novel PPAR?? ligand, KR-62980. KR-62980 inhibited in vitro basal tube formation and in vivo neovascularization in mice induced by Matrigel containing vascular endothelial growth factor (VEGF165, 5 ng/ml). VEGF165-induced cell proliferation and chemotactic migration in human umbilical vein endothelial cells (HUVECs) were also suppressed by KR-62980, in a mechanism accompanied by apoptotic cell death. KR-62980 downregulated the VEGF165-induced VEGFR-2 expression but increased the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression in parallel with reduced phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2), PI3K p85??, and p38 MAPK. The knockdown of PTEN expression abolished KR-62980-suppressed cell proliferation and angiogenesis. All of the effects of KR-62980 disappeared with pretreatment of bisphenol A diaglycidyl ether (BADGE), a PPAR?? antagonist. In summary, KR-62980 inhibited VEGF165-induced angiogenesis in HUVECs by PPAR??-mediated dual mechanisms: VEGFR-2 downregulation and PTEN upregulation. 相似文献
15.
Pullikotil P Chen H Muniyappa R Greenberg CC Yang S Reiter CE Lee JW Chung JH Quon MJ 《The Journal of nutritional biochemistry》2012,23(9):1134-1145
Epigallocatechin gallate (EGCG), the major polyphenol in green tea, acutely stimulates production of nitric oxide (NO) from vascular endothelium to reduce hypertension and improve endothelial dysfunction in spontaneously hypertensive rats. Herein, we explored additional mechanisms whereby EGCG may mediate beneficial cardiovascular actions. When compared with vehicle-treated controls, EGCG treatment (2.5 μM, 8 h) of human aortic endothelial cells (HAEC) caused a ~three-fold increase in heme oxygenase-1 (HO-1) mRNA and protein with comparable increases in HO-1 activity. This was unaffected by pretreatment of cells with wortmannin, LY294002, PD98059 or L-NAME (PI 3-kinase, MEK and NO synthase inhibitors, respectively). Pretreatment of HAEC with SB203580 (p38 MAPK inhibitor) or siRNA knockdown of p38 MAPK completely blocked EGCG-stimulated induction of HO-1. EGCG treatment also inhibited tumor-necrosis-factor-α-stimulated expression of vascular cell adhesion molecule (VCAM)-1 and decreased adhesion of monocytes to HAEC. siRNA knockdown of HO-1, p38 MAPK or Nrf-2 blocked these inhibitory actions of EGCG. In HAEC transiently transfected with a human HO-1 promoter luciferase reporter (or an isolated Nrf-2 responsive region), luciferase activity increased in response to EGCG. This was inhibitable by SB203580 pretreatment. EGCG-stimulated expression of HO-1 and Nrf-2 was blocked by siRNA knockdown of Nrf-2 or p38 MAPK. Finally, liver from mice chronically treated with EGCG had increased HO-1 and decreased VCAM-1 expression. Thus, in vascular endothelium, EGCG requires p38 MAPK to increase expression of Nrf-2 that drives expression of HO-1, resulting in increased HO-1 activity. Increased HO-1 expression may underlie anti-inflammatory actions of EGCG in vascular endothelium that may help mediate beneficial cardiovascular actions of green tea. 相似文献
16.
Shu-Ching Hsieh Min-Hsien Huang Chun-Wen Cheng Jyun-Hao Hung Shun-Fa Yang Yi-Hsien Hsieh 《Apoptosis : an international journal on programmed cell death》2013,18(12):1548-1560
α-Mangostin is a dietary xanthone that has been shown to have anti-cancer and anti-proliferative properties in various types of human cancer cells. This study investigates the molecular mechanism of the apoptosis-inducing effects of α-mangostin on human hepatocellular carcinoma (HCC) cells. We observed that α-mangostin reduces the viability of HCC cells in a dose- and time-dependent manner. α-Mangostin mediated apoptosis of SK-Hep-1 cells is accompanied by nuclear chromatin condensation and cell cycle arrest in the sub-G1 phases as well as phosphatidylserine exposure. Furthermore, α-mangostin triggered the mitochondrial caspase apoptotic pathway, as indicated by the loss of mitochondrial membrane potential, the release of cytochrome c from mitochondria, and the regulation of B cell lymphoma 2 family member expression. Moreover, α-mangostin inhibited a sustained activation of p38 mitogen-activated protein kinase (MAPK) phosphorylation, and treatment with a p38 MAPK inhibitor enhanced α-mangostin-induced caspase activation and apoptosis in SK-Hep-1 cells. In vivo xenograft mice experiments revealed that α-mangostin significantly reduced tumor growth and weight in mice inoculated with SK-Hep-1 cells. These findings demonstrate that α-mangostin induces mitochondria-mediated apoptosis through inactivation of the p38 MAPK signaling pathway and that α-mangostin inhibits the in vivo tumor growth of SK-Hep-1 xenograft mice. 相似文献
17.
18.
Xiaoyi Zhang Yu Song Xiaolin Han Liang Feng Rushang Wang Minghua Zhang Maomao Zhu Xiaobin Jia Shaoying Hu 《Molecular and cellular biochemistry》2013,374(1-2):191-201
Advanced glycation end products (AGEs)-induced vasculopathy, including oxidative stress, inflammation and apoptosis responses, contributes to the high morbidity and mortality of coronary artery diseases in diabetic patients. The present study was conducted to evaluate the protective activity of liquiritin (Liq) on AGEs-induced endothelial dysfunction and explore its underlying mechanisms. After pretreatment with Liq, a significant reduction in AGEs-induced apoptosis, as well as reactive oxygen species generation and malondialdehyde level in human umbilical vein endothelial cells (HUVECs) were observed via acridine orange/ethidium bromide fluorescence staining test. Notably, Liq also significantly increased AGEs-reduced superoxide dismutase activity. Furthermore, the pretreatment with receptor for advanced glycation end products (RAGE)-antibody or Liq remarkably down-regulated TGF-beta1 and RAGE protein expressions and significantly blocked NF-κB activation which were proved by immunocytochemistry or immunofluorescence assays. These results indicated that Liq held potential for the protection on AGEs-induced endothelial dysfunction via RAGE/NF-κB pathway in HUVECs and might be a promising agent for the treatment of vasculopathy in diabetic patients. 相似文献
19.
Meng Cai Sitao Li Yunfei Shuai Jie Li Jieqiong Tan Qiyi Zeng 《Journal of cellular physiology》2019,234(6):9184-9193
Tumor necrosis factor α (TNF-α), a pivotal cytokine in sepsis, protects the host against pathogens by promoting an inflammatory response while simultaneously inducing apoptosis of the vascular endothelium. Unfortunately, inhibitors targeting certain components of the TNF-α signaling pathway to reduce cellular apoptosis have failed to translate into clinical applications, partly due to the adverse effects of excessive immunosuppression. In an attempt to discover potential targets in the TNF-α signaling pathway to modulate moderate inflammation and apoptosis during the development of sepsis, we performed a pooled genome-wide CRISPR/Cas9 knockout screen in human umbilical vein endothelial cells (HUVECs). Tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), B-cell lymphoma 2 (BCL2), Bcl2-associated death promoter (BAD), and NLR family member X1 (NLRX1) deficiencies were identified as the effective genetic suppressors of TNF-α cytotoxicity on a list of candidate regulators. CRISPR-mediated NLRX1 knockout conferred cellular resistance to challenge with TNF-α, and NLRX1 could be induced to colocalize with mitochondria following TNF-α stimulation. Thus, our work demonstrates the advantage of genome-scale screening with Cas9 and validates NLRX1 as a potential modulator of TNF-α-induced vascular endothelial apoptosis during sepsis. 相似文献
20.
Yong-Jae Kim Hee-Sung Shin Jung-Hoon Lee Yong Woo Jung Hyong-Bai Kim Un-Hwan Ha 《Journal of microbiology (Seoul, Korea)》2013,51(2):194-199
Antimicrobial peptides act as important innate immune defense mediators against invading microbes such as Streptococcus pneumoniae. Among a number of antimicrobial peptides, β-defensin 2 (BD2) has strong antimicrobial activity against S. pneumoniae. However, little is known about the molecular signaling mechanisms leading to the BD2 expression. Here, we report that BD2 is strongly induced by S. pneumoniae in human airway cells including human middle-ear cells. Among diverse pneumococcal virulence factors, pneumolysin is required for inducing BD2 whose expression is under the control of p38 mitogen-activated protein kinase (MAPK). Pneumolysin also selectively regulates the expression of MAPK phosphatase 1 (MKP1), which inhibits the p38 signaling pathway, thereby leading to upregulation of BD2 to mount an effective defense against S. pneumoniae infection. These results provide novel insights into the molecular mechanisms underlying the coordinative regulation of BD2 expression via p38-MKP1 in the pathogenesis of airway infectious diseases. 相似文献