首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The D9S1120 locus exhibits a population-specific allele of 9 repeats (9RA) in all Native American and two Siberian populations currently studied, but it is absent in other worldwide populations. Although this feature has been used in anthropological genetic studies, its impact on the evaluation of the structure and genetic relations among Native American populations has been scarcely assessed. Consequently, the aim of this study was to evaluate the anthropological impact of D9S1120 when it was added to STR population datasets in Mexican Native American groups. We analyzed D9S1120 by PCR and capillary electrophoresis (CE) in 1117 unrelated individuals from 13 native groups from the north and west of Mexico. Additional worldwide populations previously studied with D9S1120 and/or 15 autosomal STRs (Identifier kit) were included for interpopulation analyses. We report statistical results of forensic importance for D9S1120. On average, the modal alleles were the Native American-specific allele 9RA (0.3254) and 16 (0.3362). Genetic distances between Native American and worldwide populations were estimated. When D9S1120 was included in the 15 STR population dataset, we observed improvements for admixture estimation in Mestizo populations and for representing congruent genetic relationships in dendrograms. Analysis of molecular variance (AMOVA) based on D9S1120 confirms that most of the genetic variability in the Mexican population is attributable to their Native American backgrounds, and allows the detection of significant intercontinental differentiation attributed to the exclusive presence of 9RA in America. Our findings demonstrate the contribution of D9S1120 to a better understanding of the genetic relationships and structure among Mexican Native groups.  相似文献   

2.
We have analyzed 105 autosomal polymorphic short tandem repeat (STR) loci for nine East and South-eastern Asian populations (two Japanese, five Han Chinese, Thai, and Burmese populations) and a Caucasian population using a multiplex PCR typing system. All the STR loci are genomewide tetranucleotide repeat markers of which the total number of observed alleles and the observed heterozygosity were 756 and 0.743, respectively, for Japanese populations. Phylogenetic analysis for these allele frequency data suggested that the Japanese populations are more closely related with southern Chinese populations than central and/or northern ones. STRUCTURE program analysis revealed the almost clearly divided and accountable population structure at K=2–6, that the two Japanese populations always formed one group separated from the other populations and never belong to different groups at K≥3. Furthermore, our new allele frequency data for 91 loci were analyzed with those for 52 worldwide populations published by previous studies. Phylogenetic and multidimensional scaling (MDS) analyses indicated that Asian populations with large population size (six Han Chinese, three Japanese, two Southeast Asia) formed one distinct cluster and are closer to each other than other ethnic minorities in east and Southeast Asia. This pattern may be the caviar of comparing populations with greatly differing population sizes when STR loci were analyzed.  相似文献   

3.
We investigated the genetic differentiation of five X-chromosome STR markers among five native South American Amerindian populations inhabiting three different areas of the Gran Chaco: Mocoví, Chorote, Wichí, Lengua, and Ayoreo. The observed genetic structure showed correspondence with geographic distribution more clearly than previous information obtained from autosomal STRs for the same samples. On the other hand, X-chromosome STR data did not agree with linguistic affinities. These markers proved to be informative for the study of the native populations of the Gran Chaco region.  相似文献   

4.
We have studied variation at 24 microsatellite markers among 50 individuals from each of three endogamous groups, Bhargavas, Chaturvedis, and non-Bhargava, non-Chaturvedi Brahmins of Uttar Pradesh, India. The number of alleles at the loci tested varied from 4 to 11, with an average of 6 at each locus. Heterozygosity was found to be quite high at all loci in the three subpopulations. It varied between 0.44 to 0.84 among Bhargavas (average 0.6510), 0.44 to 0.80 among Chaturvedis (average 0.6633 +/-), and 0.42 to 0.85 among Brahmins (average 6.694 +/-). Hardy-Weinberg equilibrium analysis revealed that these populations are under genetic equilibrium at almost all the loci tested. Comparisons of allele frequency between Bhargavas and Chaturvedis showed that they differed significantly at 14 short tandem repeat (STR) markers (p < 0.001), while Chaturvedis and Brahmins differed at 6 (p < 0.05) and Brahmins and Bhargavas at 8 (p < 0.05). Average F(IS) and F(ST) for the 24 STR markers was -0.02 and 0.013, respectively. We used both un-weighted pair group with arithmetic mean and principal components analysis to evaluate genetic distances among the three groups. Our results revealed that although there were differences at particular allele frequencies between Bhargavas vs. Brahmins, Bhargavas vs. Chaturvedis, and Brahmins vs. Chaturvedis, these differences were not statistically significant when combined over all 24 STR markers between Chaturvedis vs. Brahmins and Bhargavas vs. Brahmins. The genetic distance analysis revealed that Bhargavas are slightly apart from the other two populations.  相似文献   

5.
Mortality differentials reflect in part the social and economic conditions of groups in society. In this paper, the relationship between ethnic origin and mortality is investigated from the point of view of convergence and minority group status hypotheses. Multivariate methods are used to study differences among the French, the British and Native Indian (includes Metis and Eskimos) populations of Canada over three census periods from 1951 to 1971. A significant downward trend in the death rates of all three subpopulations is noted, but substantial differences persist, as the pace of mortality decline over time varies across the three ethnic groups. In the twenty-year interval between 1951 and 1971, Native Indians have experienced spectacular reductions in their overall death rates, but in comparative terms, their mortality levels still exceed those of the French (who show intermediate levels) and the British ethnic groups. The multivariate analysis provides strong support for the minority status effect, which is taken to suggest that the roots of inequalities in survival probabilities are partly a result of social and economic disparities. The convergence thesis received some support: over time the general pattern is one of declining mortality with some narrowing of the differences. An examination of four broad causes of death (neoplasms, cardiovascular, accidents-violence, and "other") suggests that Native Indians are characteristic of populations undergoing epidemiologic and demographic transitions. Their elevated risk of accidents-violence reflects social disruption in the process of modernization. Causes of death of the French and British populations are characterized by higher risks of cancer and cardiovascular diseases, typical of advanced societies.  相似文献   

6.
Genetic diversity of present American populations results from very complex demographic events involving different types and degrees of admixture. Through the analysis of lineage markers such as mtDNA and Y chromosome it is possible to recover the original Native American haplotypes, which remained identical since the admixture events due to the absence of recombination. However, the decrease in the effective population sizes and the consequent genetic drift effects suffered by these populations during the European colonization resulted in the loss or under-representation of a substantial fraction of the Native American lineages. In this study, we aim to clarify how the diversity and distribution of uniparental lineages vary with the different demographic characteristics (size, degree of isolation) and the different levels of admixture of extant Native groups in Colombia. We present new data resulting from the analyses of mtDNA whole control region, Y chromosome SNP haplogroups and STR haplotypes, and autosomal ancestry informative insertion-deletion polymorphisms in Colombian individuals from different ethnic and linguistic groups. The results demonstrate that populations presenting a high proportion of non-Native American ancestry have preserved nevertheless a substantial diversity of Native American lineages, for both mtDNA and Y chromosome. We suggest that, by maintaining the effective population sizes high, admixture allowed for a decrease in the effects of genetic drift due to Native population size reduction and thus resulting in an effective preservation of the Native American non-recombining lineages.  相似文献   

7.
We successfully extracted DNA from a bone sample of a Neolithic skeleton (dated 3,600 +/- 60 years BP) excavated in northeastern Yakutia (east Siberia). Ancient DNA was analyzed by autosomal STRs (short tandem repeats) and by sequencing of the hypervariable region I (HV1) of the mitochondrial DNA (mtDNA) control region. The STR profile, the mitochondrial haplotype, and the haplogroup determined were compared with those of modern Eurasian and Native American populations. The results showed the affinity of this ancient skeleton with both east Siberian/Asian and Native American populations.  相似文献   

8.
Genotyping of highly polymorphic short tandem repeat (STR) markers is widely used for the genetic identification of individuals in forensic DNA analyses and in paternity disputes. The National DNA Profile Databank recently established by the DNA Identification Act in Korea contains the computerized STR DNA profiles of individuals convicted of crimes. For the establishment of a large autosomal STR loci population database, 1805 samples were obtained at random from Korean individuals and 15 autosomal STR markers were analyzed using the AmpFlSTR Identifiler PCR Amplification kit. For the 15 autosomal STR markers, no deviations from the Hardy-Weinberg equilibrium were observed. The most informative locus in our data set was the D2S1338 with a discrimination power of 0.9699. The combined matching probability was 1.521 × 10−17. This large STR profile dataset including atypical alleles will be important for the establishment of the Korean DNA database and for forensic applications.  相似文献   

9.
Autosomal DNA polymorphisms can provide new information and understanding of both the origins of and relationships among modern Native American populations. At the same time that autosomal markers can be highly informative, they are also susceptible to ascertainment biases in the selection of the markers to use. Identifying markers that can be used for ancestry inference among Native American populations can be considered separate from identifying markers to further the quest for history. In the current study, we are using data on nine Native American populations to compare the results based on a large haplotype‐based dataset with relatively small independent sets of single nucleotide polymorphisms. We are interested in what types of limited datasets an individual laboratory might be able to collect are best for addressing two different questions of interest. First, how well can we differentiate the Native American populations and/or infer ancestry by assigning an individual to her population(s) of origin? Second, how well can we infer the historical/evolutionary relationships among Native American populations and their Eurasian origins? We conclude that only a large comprehensive dataset involving multiple autosomal markers on multiple populations will be able to answer both questions; different small sets of markers are able to answer only one or the other of these questions. Using our largest dataset, we see a general increasing distance from Old World populations from North to South in the New World except for an unexplained close relationship between our Maya and Quechua samples. Am J Phys Anthropol, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
Li MH  Merilä J 《Molecular ecology》2010,19(23):5281-5295
Sex-bias in natal dispersal patterns can have important genetic and evolutionary consequences; however, reliable information about sex-biased dispersal can be difficult to obtain with observational methods. We analysed the sex-specific patterns of genetic differentiation among three Siberian jay (Perisoreus infaustus) populations, using 11 autosomal and six Z-chromosomal microsatellite markers. Irrespective of marker-type and indices used (viz. F(ST), average pairwise relatedness and effective number of immigrants), all analyses provided strong evidence for male-biased dispersal. Population structuring at autosomal loci (F(ST) =0.046, P<0.05) exceeded that at Z-chromosomal loci (F(ST) =0.033, P<0.05), and levels of introgression were inferred to be significantly higher for Z-chromosomal when compared to autosomal loci. Of the three populations studied, levels of genetic variability were the lowest in the southernmost fringe population, despite the fact that it harboured a group of divergent Z-chromosomal haplotypes that were not found in the other two populations. In general, the results provide strong genetic evidence for male-biased dispersal in Siberian jays, where observational data have previously suggested male philopatry. The results also highlight the utility of Z-chromosomal markers for gaining insights into the genetic diversity and structuring of populations.  相似文献   

11.
The high prevalence of rare genetic diseases in Finland has been attributed to a founder effect some 2,000 years ago. However, this hypothesis has not been supported from mtDNA sequence and autosomal microsatellite data which indicate high levels of gene diversity. Here we have identified genetic evidence for a population bottleneck by examining variable microsatellite loci on the nonrecombining portion of Y chromosomes from Finland and four populations from Europe and the Americas. Sequence data from segment I of the control region (HVS-1) of mtDNA (360 bases) and 20 autosomal dinucleotide repeat markers were also analyzed. Partitions of genetic variance within and between populations revealed significant levels of Y-chromosome differentiation between populations. Phylogenetic and diversity analyses revealed divergent Finnish Y-haplotype clades and significantly lower Y-haplotype diversity among Finns as compared to other populations. Surprisingly, Finnish Y-haplotype diversity was even lower than the Native American populations. These results provide support for the Finnish bottleneck hypothesis. Evidence for two separate founding Finnish Y-chromosome lineages was also observed from the Y-chromosome phylogeny. A limited number of closely related founding males may have contributed to the low number of paternal lineages in the Finnish population. In contrast, high levels of genetic diversity for mtDNA and autosomal STRs may be the result of sex-biased gene flow and recent immigration to urban areas from established internal isolates within Finland.  相似文献   

12.
The extent of genetic polymorphism at fifteen autosomal microsatellite markers in 54 ethnically, linguistically and geographically diverse human populations of India was studied to decipher intrapopulation diversity. The parameters used to quantify intrapopulation diversity were average allele diversity, average heterozygosity, allele range (base pairs), and number of alleles. Multilocus genotype frequencies calculated for selected populations were utilized for testing conformity with the assumption of Hardy-Weinberg equilibrium. The exact test values, after Bonferroni correction, showed significant deviation amongst Gowda (vWA, Penta E); Dhangar, Satnami and Gounder (D8S1179); Hmar (FGA); Kuki and Balti (vWA) groups. Relatively low number of alleles and allelic diversity (base-pairs size) had been observed in populations of central India as compared with southern and northern regions of the country. The communities of Indo-Caucasoid ethnic origin and Indo-European linguistic family (Kshatriya of Uttar Pradesh) showed highest allelic diversity, as well as rare alleles, not reported in any other Indian populations. Analysis based on average heterozygosity was also found to be lowest among the populations of central India (0.729) and highest among the populations from north (0.777) and west (0.784) regions of the country, having Indo-Caucasoid ethnic origin and Austro-Asiatic linguistic affiliation. The maximum power of discrimination (85%-89%) had been observed at loci FGA, Penta E, D18S51 and D21S11, suggested high intrapopulation diversity in India. Genetic diversity revealed by STR markers was consistent with the known demographic histories of populations. Thus, the present study clearly demonstrated that the intrapopulation diversity is not only present at the national level, but also within smaller geographical regions of the country. This is the first attempt to understand the extent of diversity within populations of India at such a large scale at genomic level.  相似文献   

13.
We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.  相似文献   

14.
An understanding of the genetic affinity and the past history of the tribal populations of India requires the untangling of the confounding influences of language, ethnicity, and geography on the extant diverse tribes. The present study examines the genetic relationship of linguistically (Dravidian, Austro‐Asiatic, and Tibeto‐Burman) and ethnically (Australian and East Asian) diverse tribal populations (46) inhabiting different regions of the Indian subcontinent. For the purpose, we have utilized the published data on allele frequency of 15 autosomal STR loci of our study on six Adi sub‐tribes of Arunachal Pradesh and compared the same with the reported allele frequency data, for nine common autosomal STR loci, of 40 other tribes. Phylogenetic and principal component analyses exhibit geography based clustering of Tibeto‐Burman speakers and separation of the Mundari and Mon‐Khmer speaking Austro‐Asiatic populations. The combined analyses of all 46 populations show clustering of the groups belonging to same ethnicity and inhabiting contiguous geographic regions, irrespective of their different languages. These results help us to reconstruct and understand three plausible scenarios of the antiquity of Indian tribal populations: the Dravidian and Austro‐Asiatic (Mundari) tribes were possibly derived from common early settlers; the Tibeto‐Burman tribes possibly belonged to a different ancestry and the Mon‐Khmer speaking Austro‐Asiatic populations share a common ancestry with some of the Tibeto‐Burman speakers. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
In the present study, we report, for the first time, the allele and haplotype frequencies of 17 Y-STR (Y-filer) loci in the populations of Haiti, Jamaica and the Bahamas (Abaco, Eleuthera, Exuma, Grand Bahama, Long Island and New Providence). This investigation was undertaken to assess the paternal genetic structure of the abovementioned Caribbean islands. A total of 607 different haplotypes were identified among the 691 males examined, of which 537 (88.5%) were unique. Haplotype diversities (HD) ranged from 0.989 in Long Island to 1.000 in Grand Bahama, with limited haplotype sharing observed among these Caribbean collections. Discriminatory capacity (DC) values were also high, ranging from 79.1% to 100% in Long Island and Grand Bahama, respectively, illustrating the capacity of this set of markers to differentiate between patrilineal related individuals within each population. Phylogenetic comparison of the Bahamian, Haitian and Jamaican groups with available African, European, East Asian and Native American populations reveals strong genetic ties with the continental African collections, a finding that corroborates our earlier work using autosomal STR and Y-chromosome binary markers. In addition, various degrees of sex-biased gene flow exhibiting disproportionately higher European paternal (as compared to autosomal) influences were detected in all Caribbean islands genotyped except for Abaco and Eleuthera. We attribute the presence or absence of asymmetric gene flow to unique, island specific demographic events and family structures.  相似文献   

16.
ABSTRACT: BACKGROUND: A detailed genetic study of the pre-Columbian population inhabiting the Tompullo 2 archaeological site (department Arequipa, Peru) was undertaken to resolve the kin relationships between individuals buried in six different chullpas. Kin relationships were an important factor shaping the social organization in the pre-Columbian Andean communities, centering on the ayllu, a group of relatives that shared a common land and responsibilities. The aim of this study was to evaluate whether this Andean model of a social organization had an influence on mortuary practices, in particular to determine whether chullpas served as family graves. RESULTS: The remains of forty-one individuals were analyzed with both uniparental (mtDNA, Y-chromosome) and biparental (autosomal microsatellites) markers. Reproducible HVRI sequences, autosomal and Y chromosomal STR profiles were obtained for 24, 16 and 11 individuals, respectively. Mitochondrial DNA diversity was comparable to that of ancient and contemporary Andean populations. The Tompullo 2 population exhibited the closest relationship with the modern population from the same region. A kinship analysis revealed complex pattern of relations within and between the graves. However mean relatedness coefficients regarding the pairs of individuals buried in the same grave were significantly higher than those regarding pairs buried in different graves. The Y chromosome profiles of 11 males suggest that only members of one male line were buried in the same grave. CONCLUSIONS: Genetic investigation of the population that inhabited Tompullo 2 site shows continuity between pre-Columbian and modern Native Amerindian populations inhabiting the Arequipa region. This suggests that no major demographic processes have influenced the mitochondrial DNA diversity of these populations during the past five hundred years. The kinship analysis involving uni- and biparental markers suggests that the community that inhabited the Tompullo 2 site was organized into extended family groups that were buried in different graves. This finding is in congruence with known models of social organization of Andean communities.  相似文献   

17.
Variable socio‐cultural influences developed in the colonial Caribbean as a result of competing European hegemonic rule. In this study, we examine how colonial regulations regarding social hierarchies and mate choice worked to influence the genetic landscape of contemporary African Caribbean populations. To this end, 420 individuals from Dominica, Grenada, St. Kitts, St. Lucia, St. Thomas, St. Vincent, Jamaica, and Trinidad were genotyped for 105 autosomal ancestry informative markers. Based on these data, population substructure and admixture were assessed using an exact test, a model‐based clustering method, and principal components analysis. On average, individual admixture estimates of the pooled African Caribbean sample were 77% (SD ± 18%) West African, 15% (SD ± 15%) European, and 7.7% (SD ± 8%) Native American. In general, ancestry estimates were significantly different between Dominica and all other islands. Genetic structure analyses indicated subdivision into two subpopulations on most islands. Finally, unlike all of the other Caribbean populations that clustered adjacent to African populations, the Dominican population was more intermediate between the three parental groups in the principal components plot. As a result of the significant French influence throughout Dominican history, Dominica did not have the same cultural influences that typified other Anglophone colonies. Consequently, there were different social hierarchies and resulting mate choices on Dominica compared with the other considered islands. This study highlights the complex socio‐cultural history of a broad region of the Caribbean and attests to the interplay between social and biological factors in shaping the genetic diversity present in present‐day communities. Am J Phys Anthropol 151:135–143, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Fifteen autosomal STR loci (D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, D16S539, CSF1PO, Penta D, VWA, D8S1179, TPOX, and FGA) were studied in three geographically close but isolated populations from the Bosnian mountain area. The three villages are Bobovica, Dejcici, and Lukomir. DNA was obtained from 83 individuals, and the allele frequencies and genetic diversity among the three sample groups were compared. In addition, seven of the STR loci (CSF1PO, D13S317, D3S1358, D5S818, D7S820, FGA, TH01) were used in a comparative population analysis of the Bjelasnica-Treskavica region and the Adriatic islands of Brac, Hvar, and Korcula. Although the sample sizes are relatively small, the observed variation within any of the small isolated populations is high and comparable to less isolated groups. In addition, even though the populations are geographically isolated, the STR data are similar among the populations. The most significant frequency differences were observed at the TH01 locus. Although the specific allele distributions in any untyped population cannot be determined a priori, we find support for a high degree of diversity for the STR loci in most populations. In addition, the multiple locus profile is highly informative not only for various population studies but also for forensic studies, even when specific population data are not available.  相似文献   

19.
A total of 63 binary polymorphisms and 10 short tandem repeats (STRs) were genotyped on a sample of 2,344 Y chromosomes from 18 Native American, 28 Asian, and 5 European populations to investigate the origin(s) of Native American paternal lineages. All three of Greenberg's major linguistic divisions (including 342 Amerind speakers, 186 Na-Dene speakers, and 60 Aleut-Eskimo speakers) were represented in our sample of 588 Native Americans. Single-nucleotide polymorphism (SNP) analysis indicated that three major haplogroups, denoted as C, Q, and R, accounted for nearly 96% of Native American Y chromosomes. Haplogroups C and Q were deemed to represent early Native American founding Y chromosome lineages; however, most haplogroup R lineages present in Native Americans most likely came from recent admixture with Europeans. Although different phylogeographic and STR diversity patterns for the two major founding haplogroups previously led to the inference that they were carried from Asia to the Americas separately, the hypothesis of a single migration of a polymorphic founding population better fits our expanded database. Phylogenetic analyses of STR variation within haplogroups C and Q traced both lineages to a probable ancestral homeland in the vicinity of the Altai Mountains in Southwest Siberia. Divergence dates between the Altai plus North Asians versus the Native American population system ranged from 10,100 to 17,200 years for all lineages, precluding a very early entry into the Americas.  相似文献   

20.
A comprehensive review of uniparental systems in South Amerindians was undertaken. Variability in the Y-chromosome haplogroups were assessed in 68 populations and 1,814 individuals whereas that of Y-STR markers was assessed in 29 populations and 590 subjects. Variability in the mitochondrial DNA (mtDNA) haplogroup was examined in 108 populations and 6,697 persons, and sequencing studies used either the complete mtDNA genome or the highly variable segments 1 and 2. The diversity of the markers made it difficult to establish a general picture of Y-chromosome variability in the populations studied. However, haplogroup Q1a3a* was almost always the most prevalent whereas Q1a3* occurred equally in all regions, which suggested its prevalence among the early colonizers. The STR allele frequencies were used to derive a possible ancient Native American Q-clade chromosome haplotype and five of six STR loci showed significant geographic variation. Geographic and linguistic factors moderately influenced the mtDNA distributions (6% and 7%, respectively) and mtDNA haplogroups A and D correlated positively and negatively, respectively, with latitude. The data analyzed here provide rich material for understanding the biological history of South Amerindians and can serve as a basis for comparative studies involving other types of data, such as cultural data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号