首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We explored molecular and morphological alteration in gill mitochondria-rich (MR) cells of Mozambique tilapia, Oreochromis mossambicus, acclimated to deionized freshwater (DFW), freshwater (FW), 1/3-diluted seawater (1/3 SW) and seawater (SW). Scanning electron microscopic observations revealed that the apical membrane of MR cells appeared as a flat or slightly projecting disk in DFW and FW, being larger in DFW than in FW. In contrast, the apical membrane typically formed a pit structure in 1/3 SW and SW. The mRNA expression levels of Na(+)/H(+) exchanger-3 (NHE3) and Na(+)/Cl(-) cotransporter (NCC) in the gills were increased with decreasing environmental salinity, whereas Na(+)/K(+)/2Cl(-) cotransporter-1a (NKCC1a) expression was upregulated by increasing salinity. Immunofluorescence staining showed that the MR cell population of DFW- and FW-acclimated tilapia consisted mostly of MR cells with apical NHE3 and those with apical-NCC; MR cells with basolateral NKCC1a dominated in SW-acclimated tilapia. These results indicated that apical-NHE3 and apical-NCC MR cells were ion-absorbing cells, and that basolateral-NKCC1a MR cells were ion-secreting cells. In fish acclimated to 1/3 SW, both ion-absorbing and secreting cells existed in the gills, suggesting that fish in near-isotonic water were equipped with mechanisms of both hyper- and hypoosmoregulation to prepare for environmental salinity changes.  相似文献   

2.
3.
Two cDNA isoforms of the NKCC1 secretory cotransporter have been isolated from the European eel. The NKCC1a isoform exhibited mRNA expression in a wide range of tissues in a similar fashion to mammals, whereas NKCC1b was expressed primarily in the brain. The effect of freshwater (FW) to seawater (SW) transfer on NKCC1a expression was dependent on the developmental stage. In non-migratory yellow eels, NKCC1a mRNA expression in the gill was transiently up-regulated 4.3-fold after 2 days but also subsequently by 2.5-6-fold 3 weeks after SW transfer. Gill NKCC1a expression was localised mainly in branchial chloride cells of SW acclimated yellow eels. In contrast to yellow eels, NKCC1a mRNA abundance was not significantly different following SW acclimation in silver eel gill. NKCC1a mRNA abundance decreased in the kidney following SW acclimation and this may correlate with lower tubular ion/fluid secretion and urine flow rates in SW teleosts. Kidney NKCC1a mRNA expression in silver eels was also significantly lower than in yellow eels, suggesting some pre-acclimation of mRNA levels. NKCC1a mRNA was expressed at similar low levels in the middle intestine of FW- and SW-acclimated yellow or silver eels, suggesting the presence of an ion secretory mechanism in this gut segment.  相似文献   

4.
5.
6.
Estuaries of tropical developing countries suffering from severe droughts induced by climate change are habitats to fish, which face drastic salinity variations and the contact with pollutants. The Western Africa tilapia Sarotherodon melanotheron is highly resistant to hypersalinity, but the effect of human-released xenobiotics on its adaptation is barely known. Controlled experiments were conducted to observe S. melanotheron gill adaptation to abrupt salinity variations in the presence of waterborne DDT, at concentrations detected in their natural habitat. The gills appeared as an important site of DDT conversion to DDD and/or depuration. A 12-days DDT exposure resulted in decreased gill epithelium thickness at all salinities (from fresh- to hypersaline-water), and the structure of gills from freshwater fish was particularly altered, relative to controls. No unbalance in tilapia blood osmolality was observed following DDT exposure, which however caused a decrease in branchial Na(+)-K(+)-ATPase (NKA) activity. Gill cellular NKA expression was reduced in salt-water, together with the expression of the CFTR chloride channel in hypersaline water. Although S. melanotheron seems very resistant (especially in seawater) to short-term waterborne DDT contamination, the resulting alterations of the gill tissue, cells and enzymes might affect longer term respiration, toxicant depuration and/or osmoregulation in highly fluctuating salinities.  相似文献   

7.
The southern flounder is a euryhaline teleost that inhabits ocean, estuarine, and riverine environments. We investigated the osmoregulatory strategy of juvenile flounder by examining the time-course of homeostatic responses, hormone levels, and gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein expression after salinity challenge. Transfer of freshwater (FW)-acclimated flounder to sea water (SW) induced an increase in plasma osmolality and cortisol and a decrease in muscle water content, plasma insulin-like growth factor I (IGF-I) and hepatic IGF-I mRNA, all returning to control levels after 4 days. Gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein levels were elevated in response to SW after 4 days. Transfer of SW-acclimated flounder to FW reduced gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein, increased plasma IGF-I, but did not alter hepatic IGF-I mRNA or plasma cortisol levels. Gill claudin-3 and claudin-4 immunoreactive proteins were elevated in FW versus SW acclimated flounder. The study demonstrates that successful acclimation of southern flounder to SW or FW occurs after an initial crisis period and that the salinity adaptation process is associated with changes in branchial expression of ion transport and putative tight junction claudin proteins known to regulate epithelial permeability in mammalian vertebrates.  相似文献   

8.
The bottom-dwelling, longhorn sculpin, Myoxocephalus octodecimspinosus, is traditionally viewed as a stenohaline marine fish, but fishermen have described finding this sculpin in estuaries during high tide. Little is known about the salinity tolerance of the longhorn sculpin; thus, the purposes of these experiments were to explore the effects of low environmental salinity on ion transporter expression and distribution in the longhorn sculpin gill. Longhorn sculpin were acclimated to either 100% seawater (SW, sham), 20% SW, or 10% SW for 24 or 72 hr. Plasma osmolality, sodium, potassium, and chloride concentrations were not different between the 20 and 100% treatments; however, they were 20-25% lower with exposure to 10% SW at 24 and 72 hr. In the teleost gill, regulation of Na(+), K(+)-ATPase (NKA), Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), and the chloride channel, cystic fibrosis transmembrane conductance regulator (CFTR) are necessary for ion homeostasis. We immunolocalized these proteins to the mitochondrion-rich cell of the gill and determined that acclimation to low salinity does not affect their localization. Also, there was not a downregulation of gill NKA, NKCC1, and CFTR mRNA or protein during acclimation to low salinities. Collectively, these results suggest that down to 20% SW longhorn sculpin are capable of completely regulating ion levels over a 72-hr period, whereas 10% SW exposure results in a significant loss of ions and no change in ion transporter density or localization in the gill. We conclude that longhorn sculpin can tolerate low-salinity environments for days but, because they cannot regulate ion transporter density, they are unable to tolerate low salinity for longer periods or enter freshwater (FW). The genus Myoxocephalus has three FW species, making this group an excellent model to test evolutionary and physiological mechanisms that allow teleosts to invade new low salinities successfully.  相似文献   

9.
Alterations in EGF receptor (EGFR) signaling occur in intestinal disorders associated with dysregulated epithelial transport. In the present study, we investigated a role for the EGFR in the chronic regulation of intestinal epithelial secretory function. Epithelial Cl(-) secretion was measured as changes in short-circuit current (Isc) across voltage-clamped monolayers of T84 cells in Ussing chambers. Acute treatment of T84 cells with EGF (100 ng/ml, 15 min) chronically enhanced Isc responses to a broad range of secretagogues. This effect was apparent within 3 h, maximal by 6 h, and sustained for 24 h after treatment with EGF. The Na+/K+/2Cl(-) cotransporter (NKCC1) inhibitor bumetanide (100 microM) abolished the effect of EGF, indicating increased responses are due to potentiated Cl(-) secretion. Neither basal nor agonist-stimulated levels of intracellular Ca2+ or PKA activity were altered by EGF, implying that the effects of the growth factor are not due to chronic alterations in levels of second messengers. EGF increased the expression of NKCC1 with a time course similar to that of its effects on Cl(-) secretion. This effect of EGF was maximal after 6 h, at which time NKCC1 expression in EGF-treated cells was 199.9 +/- 21.9% of that in control cells (n = 21, P < 0.005). EGF-induced NKCC1 expression was abolished by actinomycin D, and RT-PCR analysis demonstrated EGF increased expression of NKCC1 mRNA. These data increase our understanding of mechanisms regulating intestinal fluid and electrolyte transport and reveal a novel role for the EGFR in the chronic regulation of epithelial secretory capacity through upregulation of NKCC1 expression.  相似文献   

10.
In this study, we aimed to establish an experimental model to study the role of the gill mitochondrion-rich cells (MRCs) of freshwater fish in Na(+) uptake and to examine the effect of adjusting external Na(+) and Cl(-) ions on selected ion transporters in gill MRCs. Japanese eels (Anguilla japonica) acclimated to deionized (DI) water for 2 weeks were transferred directly to (a) ion-supplemented artificial freshwater (AF), (b) Na(+) -deficient AF, or (c) Cl(-) -deficient AF for 2 days. The effects of the transfer on the expression levels of ion transporters in isolated gill cells were investigated. Our data demonstrated that the 2-day acclimation in ion-supplemented AF, Na(+) -deficient AF, or Cl(-) -deficient AF led to a significant increase in serum osmolarity attributed mainly to an increase in serum Na(+) and/or Cl(-) levels when compared with DI-acclimated eel. Significant inductions of V-type H(+) -ATPase (V-H(+) -ATPase) and cotransporter (NBC1) mRNA expression in gill MRCs were detected in AF-acclimated fish. In fish acclimated to Na(+) -deficient AF, mRNA expression levels of V-H(+) -ATPase, NBC1, and Na(+) /H(+) -exchanger-3 (NHE3) were significantly increased in MRCs. Fish acclimated to Cl(-) -deficient AF showed no observable change in expression levels of ion transporters in gill MRCs. In addition, expression levels of ion transporters in pavement cells were stable throughout the 2-day experiments. These data indicate that the level of Na(+) in freshwater is important for altering the mRNA expression of ion transporters in gill MRCs, which supports the notion that gill MRCs play important roles in freshwater Na(+) uptake.  相似文献   

11.
On exposure to hyposmotic acidic water, teleost fish suffer from decreases in blood osmolality and pH, and consequently activate osmoregulatory and acid-base regulatory mechanisms to restore disturbed ion and acid-base balances. In Mozambique tilapia Oreochromis mossambicus exposed to acidic (pH 4.0) or neutral (pH 7.4-7.7) freshwater in combination with 0mM or 50mM NaCl, we examined functional and morphological changes in gill mitochondria-rich (MR) cells. We assessed gene expression of Na(+)/H(+) exchanger-3 (NHE3), Na(+)/Cl(-) cotransporter (NCC), vacuolar-type H(+)-ATPase (V-ATPase) and Na(+)/HCO(3)(-) cotransporter-1 (NBC1) in the gills. The mRNA expression of NHE3 and NCC in tilapia gills were higher in acidic freshwater than in that supplemented with 50mM NaCl, while there was no significant difference in mRNA levels of V-ATPase and NBC1. In addition, immunocytochemical observations showed that apical-NHE3 MR cells were enlarged, and frequently formed multicellular complexes with developed deep apical openings in acidic freshwater with 0mM and 50mM NaCl. These findings suggest that gill MR cells respond to external salinity and pH treatments, by parallel manipulation of osmoregulatory and acid-base regulatory mechanisms.  相似文献   

12.
13.
14.
Chloride transport mechanisms in the gills of the estuarine spotted green pufferfish (Tetraodon nigroviridis) were investigated. Protein abundance of Na(+)/K(+)-ATPase (NKA) and the other four chloride transporters, i.e., Na(+)/K(+)/2Cl(-) cotransporter (NKCC), cystic fibrosis transmembrane conductance regulator (CFTR), Cl(-)/HCO(3)(-) anion exchanger 1 (AE1), and chloride channel 3 (CLC-3) in gills of the seawater- (SW; 35 per thousand) or freshwater (FW)-acclimatized fish were examined by immunoblot analysis. Appropriate negative controls were used to confirm the specificity of the antibodies to the target proteins. The relative protein abundance of NKA was higher (i.e., 2-fold) in gills of the SW group compared to the FW group. NKCC and CFTR were expressed in gills of the SW group but not in the FW group. In contrast, the levels of relative protein abundance of branchial AE1 and CLC-3 in the FW group were 23-fold and 2.7-fold higher, respectively, compared to those of the SW group. This study is first of its kind to provide direct in vivo evidence of the protein expression of CLC-3 in teleostean gills, as well as to examine the simultaneous protein expression of the Cl(-) transporters, especially AE1 and CLC-3 of FW- and SW-acclimatized teleosts. The differential protein expression of NKA, chloride transporters in gills of the FW- and SW-acclimatized T. nigroviridis observed in the present study shows their close relationship to the physiological homeostasis (stable blood osmolality), as well as explains the impressive ionoregulatory ability of this euryhaline species in response to salinity challenges.  相似文献   

15.
We studied molecular and functional characteristics as well as hormonal regulation of the Na-K-2Cl cotransporter (NKCC) in the isolated rat heart and cardiomyocytes. NKCC activity was measured as bumetanide-sensitive (86)Rb(+) influx in isolated perfused rat hearts and isolated cardiomyocytes. Stimulation of alpha(1)-adrenoceptors (AR) by phenylephrine (30 microM) increased (86)Rb(+) influx. The NKCC inhibitor bumetanide (50 microM) reduced the response to phenylephrine by 45 +/- 13% (n = 12, P < 0.01). PD-98059 (10 microM), an inhibitor of the activation of the mitogen-activated protein kinases extracellular signal-regulated protein kinase 1 and 2 (ERK1/2), reduced the total response to phenylephrine by 51 +/- 13% (n = 10, P < 0.01) and eliminated the bumetanide-sensitive component, indicating that alpha(1)-AR mediated stimulation of NKCC is dependent on activation of ERK1/2. Inhibitors of protein kinase C or phosphatidylinositol 3-kinase had no effect. The presence of NKCC mRNA and protein was demonstrated in isolated rat cardiomyocytes. Phosphorylation of NKCC after alpha(1)-AR stimulation was shown by immunoprecipitation of the phosphoprotein from (32)P(i) prelabeled cardiomyocytes. Increased phosphorylation of the NKCC protein was also abolished by PD-98059. We conclude that the NKCC is present in rat cardiomyocytes and that ion transport by the cotransporter is regulated by alpha(1)-AR stimulation through phosphorylation of this protein involving the ERK pathway.  相似文献   

16.
Cl- transport proteins expressed in a Calu-3 airway epithelial cell line were differentiated by function and regulation by protein kinase C (PKC) isotypes. mRNA expression of Cl- transporters was semiquantitated by RT-PCR after transfection with a sense or antisense oligonucleotide to the PKC isotypes that modulate the activity of the cystic fibrosis transmembrane conductance regulator [CFTR (PKC-epsilon)] or of the Na/K/2Cl (NKCC1) cotransporter (PKC-delta). Expression of NKCC1 and CFTR mRNAs and proteins was independent of antisense oligonucleotide treatment. Transport function was measured in cell monolayers grown on a plastic surface or on filter inserts. With both culture methods, the antisense oligonucleotide to PKC-epsilon decreased the amount of PKC-epsilon and reduced cAMP-dependent activation of CFTR but not alpha(1)-adrenergic activation of NKCC1. The antisense oligonucleotide to PKC-delta did not affect CFTR function but did block alpha(1)-adrenergic activation of NKCC1 and reduce PKC-delta mass. These results provide the first evidence for mRNA and protein expression of NKCC1 in Calu-3 cells and establish the differential regulation of CFTR and NKCC1 function by specific PKC isotypes at a site distal to mRNA expression and translation in airway epithelial cells.  相似文献   

17.
The teleost gill carries out NaCl uptake in freshwater (FW) and NaCl excretion in seawater (SW). This transformation with salinity requires close regulation of ion transporter capacity and epithelial permeability. This study investigates the regulation of tight-junctional claudins during salinity acclimation in fish. We identified claudin 3- and claudin 4-like immunoreactive proteins and examined their expression and that of select ion transporters by performing Western blot in tilapia (Oreochromis mossambicus) gill during FW and SW acclimation. Transfer of FW tilapia to SW increased plasma osmolality, which was corrected after 4 days, coinciding with increased gill Na+-K+-ATPase and Na+-K+-2Cl(-) cotransporter expression. Gill claudin 3- and claudin 4-like proteins were reduced with exposure to SW. Transfer to FW increased both claudin-like proteins. Immunohistochemistry shows that claudin 3-like protein was localized deep in the FW gill filament, whereas staining was found apically in SW gill. Claudin 4-like proteins are localized predominantly in the filament outer epithelial layer, and staining appears more intense in the gill of FW versus SW fish. In addition, tilapia claudin 28a and 30 genes were characterized, and mRNA expression was found to increase during FW acclimation. These studies are the first to detect putative claudin proteins in teleosts and show their localization and regulation with salinity in gill epithelium. The data indicate that claudins may be important in permeability changes associated with salinity acclimation and possibly the formation of deeper tight junctions in FW gill. This may reduce ion permeability, which is a critical facet of FW osmoregulation.  相似文献   

18.
In this article, the second of two, we continue our studies of sodium-dependent transport systems in human cartilage from healthy individuals and with osteoarthritis (OA) and rheumatoid arthritis (RA). We demonstrate the presence of the epithelial sodium channel (ENaC), previously undescribed in chondrocytes. This system is composed of three subunits, alpha, beta and gamma. We have shown that the human chondrocytes express at least the alpha and the beta subunit of ENaC. The expression of these subunits is altered in arthritic chondrocytes. In RA samples the quantity of alpha and beta is significantly higher than in control samples. On the other hand, ENaC alpha and beta subunits are absent in the chondrocytes of OA cartilage. Human chondrocytes also possess three isoforms of the Na+/H+ exchanger (NHE), NHE1, NHE2 and NHE3. The NHE system is composed of a single protein and is believed to participate in intracellular pH regulation. Furthermore, our studies indicate that at least one isoform of the electroneutral Na+/K+/2Cl- cotransporter (NKCC) is present in human chondrocytes. There are no obvious variations in the relative expression of NHE isoforms or NKCC between healthy and arthritic cartilage. Our data suggests that chondrocytes from arthritic cartilage may adapt to changes in their environmental sodium concentration through variations in ENaC protein levels. ENaC is also likely to serve as a major sodium entry mechanism, a process that, along with cytoskeletal proteins, may be part of mechanotransduction in cartilage.  相似文献   

19.
Smolting salmonids typically require weeks to months of physiological preparation in freshwater (FW) before entering seawater (SW). Remarkably, pink salmon (Oncorhynchus gorbuscha) enter SW directly following yolk absorption and gravel emergence at a size of 0.2 g. To survive this exceptional SW migration, pink salmon were hypothesized to develop hypo-osmoregulatory abilities prior to yolk absorption and emergence. To test this, alevins (pre-yolk absorption) and fry (post-yolk absorption) were transferred from FW in darkness to SW under simulated natural photoperiod (SNP). Ionoregulatory status was assessed at 0, 1 and 5 days post-transfer. SW alevins showed no evidence of hypo-osmoregulation, marked by significant water loss and no increase in gill Na?/K?-ATPase (NKA) activity or Na?:K?:2Cl? cotransporter (NKCC) immunoreactive (IR) cell frequency. Conversely, fry maintained water balance, upregulated gill NKA activity by 50 %, increased the NKA α1b/α1a mRNA expression ratio by sixfold and increased NKCC IR cell frequency. We also provide the first evidence of photoperiod-triggered smoltification in pink salmon, as fry exposed to SNP in FW exhibited preparatory changes in gill NKA activity and α1 subunit expression similar to fry exposed to SNP in SW. Interestingly, fry incurred larger increases in whole body Na? than alevins following both SW and FW + SNP exposure (40 and 20 % in fry vs. 0 % in alevins). The ability to incur and tolerate large ion loads may underlie a novel mechanism for maintaining water balance in SW prior to completing hypo-osmoregulatory development. We propose that pink salmon represent a new form of anadromy termed "precocious anadromy".  相似文献   

20.
Na(+)-K(+)-2Cl(-) cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na(+)-K(+)-2Cl(-) cotransporter was colocalized with Na(+)-K(+)-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 parts per thousand seawater had increased gill Na(+)-K(+)-2Cl(-) cotransporter abundance, large and numerous Na(+)-K(+)-2Cl(-) cotransporter immunoreactive chloride cells on the primary filament, and reduced numbers on the secondary lamellae. Gill Na(+)-K(+)-2Cl(-) cotransporter levels were low in presmolts (February) and increased 3.3-fold in smolts (May), coincident with elevated seawater tolerance. Cotransporter levels decreased below presmolt values in postsmolts in freshwater (June). The size and number of immunoreactive chloride cells on the primary filament increased threefold during smolting and decreased in postsmolts. Gill Na(+)-K(+)-ATPase activity and Na(+)-K(+)-2Cl(-) cotransporter abundance increased in parallel during both seawater acclimation and smolting. These data indicate a direct role of the Na(+)-K(+)-2Cl(-) cotransporter in salt secretion by gill chloride cells of teleost fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号