共查询到20条相似文献,搜索用时 0 毫秒
1.
Short DNA duplexes that contain a N4C-ethyl-N4C interstrand cross-link were prepared on controlled pore glass supports using a DNA synthesizer. The C-C cross-link was introduced via a convertible nucleoside on the support or by using a protected C-C cross-link phosphoramidite. An orthogonal protection scheme allowed selective chain growth in either a 3'-->5' or 5'-->3' direction. The cross-linked duplexes were purified by HPLC and characterized by MALDI-TOF mass spectrometry and/or by enzymatic digestion. 相似文献
2.
Repair of DNA interstrand cross-links 总被引:24,自引:0,他引:24
DNA interstrand cross-links (ICLs) are very toxic to dividing cells, because they induce mutations, chromosomal rearrangements and cell death. Inducers of ICLs are important drugs in cancer treatment. We discuss the main properties of several classes of ICL agents and the types of damage they induce. The current insights in ICL repair in bacteria, yeast and mammalian cells are reviewed. An intriguing aspect of ICLs is that a number of multi-step DNA repair pathways including nucleotide excision repair, homologous recombination and post-replication/translesion repair all impinge on their repair. Furthermore, the breast cancer-associated proteins Brca1 and Brca2, the Fanconi anemia-associated FANC proteins, and cell cycle checkpoint proteins are involved in regulating the cellular response to ICLs. We depict several models that describe possible pathways for the repair or replicational bypass of ICLs. 相似文献
3.
Diepoxybutane interstrand cross-links induce DNA bending 总被引:1,自引:0,他引:1
The bifunctional alkylating agent 1,2,3,4-diepoxybutane (DEB) is thought to be a major contributor to the carcinogenicity of 1,3-butadiene, from which it is derived in vivo. DEB forms DNA interstrand cross-links primarily between distal deoxyguanosine residues at the duplex sequence 5′-GNC. In order for the short butanediol tether to span this distance, distortion of the DNA target has been postulated. We determined that the electrophoretic mobility of ligated DNA oligomers containing DEB cross-links was retarded in comparison with control, uncross-linked DNA. Our data are consistent with DNA bending of ∼34° per lesion towards the major groove. 相似文献
4.
5.
Lambert S Mason SJ Barber LJ Hartley JA Pearce JA Carr AM McHugh PJ 《Molecular and cellular biology》2003,23(13):4728-4737
Drugs that produce covalent interstrand cross-links (ICLs) in DNA remain central to the treatment of cancer, but the cell cycle checkpoints activated by ICLs have received little attention. We have used the fission yeast, Schizosaccharomyces pombe, to elucidate the checkpoint responses to the ICL-inducing anticancer drugs nitrogen mustard and mitomycin C. First we confirmed that the repair pathways acting on ICLs in this yeast are similar to those in the main organisms studied to date (Escherichia coli, budding yeast, and mammalian cells), principally nucleotide excision repair and homologous recombination. We also identified and disrupted the S. pombe homologue of the Saccharomyces cerevisiae SNM1/PSO2 ICL repair gene and found that this activity is required for normal resistance to cross-linking agents, but not other forms of DNA damage. Survival and biochemical analysis indicated a key role for the "checkpoint Rad" family acting through the chk1-dependent DNA damage checkpoint in the ICL response. Rhp9-dependent phosphorylation of Chk1 correlates with G(2) arrest following ICL induction. In cells able to bypass the G(2) block, a second-cycle (S-phase) arrest was observed. Only a transient activation of the Cds1 DNA replication checkpoint factor occurs following ICL formation in wild-type cells, but this is increased and persists in G(2) arrest-deficient mutants. This likely reflects the fraction of cells escaping the G(2) damage checkpoint and arresting in the subsequent S phase due to ICL replication blocks. Disruption of cds1 confers increased resistance to ICLs, suggesting that this second-cycle S-phase arrest might be a lethal event. 相似文献
6.
Aaron Leland Rozelle Rayala Naveen Kumar 《Nucleosides, nucleotides & nucleic acids》2019,38(3):236-247
Coumarins are a class of naturally occurring compounds that have been shown to form photochemical DNA interstrand cross-links (ICLs). However, study of a coumarin base has not been explored. Using nucleophilic substitution and phosphoramidite chemistry, we synthesized a coumarin base-containing oligonucleotide. Upon exposure to long-wave ultraviolet light, the coumarin-modified oligonucleotide formed ICLs with complementary oligonucleotide containing dT and dC opposite the coumarin base, presumably through a [2?+?2] cycloaddition mechanism. Moderate yields with both bases were observed; though, dT has a higher reactivity than dC. Overall, this work provides new means for biochemical characterization of ICLs formed by coumarins. 相似文献
7.
Induction of DNA replication-mediated double strand breaks by psoralen DNA interstrand cross-links 总被引:4,自引:0,他引:4
Bessho T 《The Journal of biological chemistry》2003,278(7):5250-5254
The effect of DNA interstrand cross-links (cross-links) on DNA replication was examined with a cell-free SV40 origin-dependent DNA replication system. A defined template DNA with a single psoralen cross-link and the SV40 origin of replication was replicated by HeLa cell-free extract in the presence of SV40 large T antigen. The psoralen cross-link inhibited DNA replication by terminating chain elongation at 1-50 nucleotides before the cross-linked sites. The termination of DNA replication by the cross-links mediated the generation of double strand breaks near the cross-linked sites. These results are the first biochemical evidence of the generation of double strand breaks by DNA replication. 相似文献
8.
Fanconi anemia (FA) is a genetic cancer-predisposition syndrome characterized by bone marrow failure and cellular and chromosomal hypersensitivity to DNA cross-linking agents. Seven FA genes have been isolated and their products associate to form a pathway that interacts functionally or physically with several DNA-damage response proteins involved in cell cycle checkpoints and/or DNA repair. These proteins include BLM, ATM, BRCA1, XPF and the MRE11/RAD50/NBS1 complex. In spite of several recent striking progresses in the biochemistry and the molecular biology of the disorder, the precise function(s) of the FA proteins remain(s) poorly determined. However, several recent data indicate that the FA pathway could be involved in the coordination of both cell cycle checkpoints and DNA repair. 相似文献
9.
Rearrangement of interstrand cross-links into intrastrand cross-links in cis-diamminedichloroplatinum(II)-modified DNA.
下载免费PDF全文

In the reaction of the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP) with DNA, bifunctional intrastrand and interstrand cross-links are formed. In this work, we show that at 37 degrees C interstrand cross-links (ICL) are labile and rearrange into intrastrand cross-links. The ICL instability was first studied with a 10 base pairs (bp) double-stranded oligonucleotide containing a unique site-specific ICL resulting from chelation of the N7 position of two guanine residues on the opposite strands of DNA at the d(GC/GC) site by a cis-diammineplatinum(II) residue. The bonds between the platinum and the N7 of guanine residues within the interstrand adduct are cleaved. In 50 mM NaCl or NaClO4, this cleavage results in the formation of monofunctional adducts which subsequently form intrastrand cross-links. One cleavage reaction takes place per cross-linked duplex in either of both DNA strands. Whereas the starting cross-linked 10 bp duplex is hydrogen bonded, the two complementary DNA strands separate after the cleavage of the ICL. Under these conditions, the cleavage reaction is irreversible allowing its rate measurement (t1/2= 29+/-2 h) and closure of monofunctional adducts to intrastrand cross-links occurs within single-stranded DNA. Within a longer cross-linked oligonucleotide (20 bp), ICL are apparently more stable (t1/2= 120+/-12 h) as a consequense of monofunctional adducts closure back to ICL. We propose that the ICL cleavage is reversible in DNA and that these adducts rearrange finally into intrastrand cross-links. Our results could explain an 'ICL unhooking' in previously reported in vivo repair studies [Zhenet al. (1993)Carcinogenesis14, 919-924]. 相似文献
10.
Florian J Kasparkova J Farrell NP Brabec V 《Journal of biological inorganic chemistry》2012,17(2):187-196
The effects of major DNA intrastrand cross-links of antitumor dinuclear PtII complexes [{trans-PtCl(NH3)2}2-μ-{trans-(H2N(CH2)6NH2(CH2)2NH2(CH2)6NH2)}]4+ (1) and [{PtCl(DACH)}2-μ-{H2N(CH2)6NH2(CH2)2NH2(CH2)6NH2)}]4+ (2) (DACH is 1,2-diaminocyclohexane) on DNA stability were studied with emphasis on thermodynamic origins of that stability.
Oligodeoxyribonucleotide duplexes containing the single 1,2, 1,3, or 1,5 intrastrand cross-links at guanine residues in the
central TGGT, TGTGT, or TGTTTGT sequences, respectively, were prepared and analyzed by differential scanning calorimetry.
The unfolding of the platinated duplexes was accompanied by unfavorable free energy terms. The efficiency of the cross-links
to thermodynamically destabilize the duplex depended on the number of base pairs separating the platinated bases. The trend
was 1,5→1,2→1,3 cross-link of 1 and 1,5→1,3→1,2 cross-link of 2. Interestingly, the results showed that the capability of the cross-links to reduce the thermodynamic stability of DNA (ΔG
2980) correlated with the extent of conformational distortions induced in DNA by various types of intrastrand cross-links of 1 or 2 determined by chemical probes of DNA conformation. We also examined the efficiency of the mammalian nucleotide excision repair
systems to remove from DNA the intrastrand cross-links of 1 or 2. The efficiency of the excinucleases to remove the cross-links from DNA depended on the length of the cross-link; the trend
was identical to that observed for the efficiency of the intrastrand cross-links to thermodynamically destabilize the duplex.
Thus, the results are consistent with the thesis that an important factor that determines the susceptibility of the intrastrand
cross-links of dinuclear platinum complexes 1 and 2 to be removed from DNA by nucleotide excision repair is the efficiency of these lesions to thermodynamically destabilize
DNA. 相似文献
11.
Methylglyoxal (MG), a dietary mutagen, is present in various frequently consumed beverages and foods and in cigarette smoke. A combination of S1 nuclease hydrolysis and alkaline unwinding assay was used to demonstrate the formation of single-strand breaks and interstrand cross-links in DNA upon treatment with MG. Calf thymus DNA, when treated with increasing concentrations of MG, showed an increasing degree of S1 nuclease hydrolysis. It also showed the formation of an increasing number of strand breaks per molecule as determined by an alkaline unwinding assay. Incubation of DNA with relatively higher concentrations of methylglyoxal or prolonged treatment gave increased thermal melting temperatures and an enhanced rate of reannealing after thermal denaturation. These results indicated the formation of interstrand cross-links. Upon treatment with MG, A-T base pair depleted DNA showed a reduced number of single-strand break formation. It also showed a significantly lower decrease in Tm as compared with MG-treated normal DNA. These results showed that under the conditions used, MG primarily reacts with A-T base pairs in duplex DNA. 相似文献
12.
Wilds CJ Noronha AM Robidoux S Miller PS 《Nucleosides, nucleotides & nucleic acids》2005,24(5-7):965-969
DNA duplexes containing an ethyl interstrand crosslink that bridges the N3 atoms of thymidines on the opposite strands have been synthesized using an approach that combines conventional solid phase oligonucleotide synthesis and the selective removal of protecting groups of a crosslinked thymidine dimer. This approach allows for the assembly of a crosslinked duplex directly on the solid support. Duplexes that contain a N3T-ethyl-N3T interstrand crosslink in a staggered orientation at either a -TA- or -AT-step in a duplex have been prepared. When placed in an -AT- step of a duplex the effect was stabilizing relative to the non-crosslinked control duplex (deltaTm= +24 degrees C) and this crosslinked duplex was found to efficiently form multimers in the presence of T4 ligase. In the case of the -TA- crosslinked duplex the stabilizing effect was less pronounced (deltaT.= +6 degrees C) and likewise did not undergo self ligation under identical conditions. Molecular modeling studies suggested that the -AT- containing lesion had little deviation in structure relative to the non-crosslinked duplex DNA control, whereas the -TA- crosslinked duplex exhibited significant buckling of the base pairs flanking the lesion. 相似文献
13.
DNA replication is required To elicit cellular responses to psoralen-induced DNA interstrand cross-links 总被引:1,自引:0,他引:1
下载免费PDF全文

Akkari YM Bateman RL Reifsteck CA Olson SB Grompe M 《Molecular and cellular biology》2000,20(21):8283-8289
Following introduction of DNA interstrand cross-links (ICLs), mammalian cells display chromosome breakage or cell cycle delay with a 4N DNA content. To further understand the nature of the delay, previously described as a G(2)/M arrest, we developed a protocol to generate ICLs during specific intervals of the cell cycle. Synchronous populations of G(1), S, and G(2) cells were treated with photoactivated 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and scored for normal passage into mitosis. In contrast to what was found for ionizing radiation, ICLs introduced during G(2) did not result in a G(2)/M arrest, mitotic arrest, or chromosome breakage. Rather, subsequent passage through S phase was required to trigger both chromosome breakage and arrest in the next cell cycle. Similarly, ICLs introduced during G(1) did not cause a G(1)/S arrest. We conclude that DNA replication is required to elicit the cellular responses of cell cycle arrest and genomic instability after psoralen-induced ICLs. In primary human fibroblasts, the 4N DNA content cell cycle arrest triggered by ICLs was long lasting but reversible. Kinetic analysis suggested that these cells could remove up to approximately 2,500 ICLs/genome at an average rate of 11 ICLs/genome/h. 相似文献
14.
Mu D Bessho T Nechev LV Chen DJ Harris TM Hearst JE Sancar A 《Molecular and cellular biology》2000,20(7):2446-2454
DNA interstrand cross-links are induced by many carcinogens and anticancer drugs. It was previously shown that mammalian DNA excision repair nuclease makes dual incisions 5' to the cross-linked base of a psoralen cross-link, generating a gap of 22 to 28 nucleotides adjacent to the cross-link. We wished to find the fates of the gap and the cross-link in this complex structure under conditions conducive to repair synthesis, using cell extracts from wild-type and cross-linker-sensitive mutant cell lines. We found that the extracts from both types of strains filled in the gap but were severely defective in ligating the resulting nick and incapable of removing the cross-link. The net result was a futile damage-induced DNA synthesis which converted a gap into a nick without removing the damage. In addition, in this study, we showed that the structure-specific endonuclease, the XPF-ERCC1 heterodimer, acted as a 3'-to-5' exonuclease on cross-linked DNA in the presence of RPA. Collectively, these observations shed some light on the cellular processing of DNA cross-links and reveal that cross-links induce a futile DNA synthesis cycle that may constitute a signal for specific cellular responses to cross-linked DNA. 相似文献
15.
Xeroderma pigmentosum (XP) is characterised by defects in nucleotide excision repair, ultraviolet (UV) radiation sensitivity and increased skin carcinoma. Compared to other complementation groups, XP-F patients show relatively mild cutaneous symptoms. DNA interstrand cross-linking agents are a highly cytotoxic class of DNA damage induced by common cancer chemotherapeutics such as cisplatin and nitrogen mustards. Although the XPF-ERCC1 structure-specific endonuclease is required for the repair of ICLs cellular sensitivity of primary human XP-F cells has not been established. In clonogenic survival assays, primary fibroblasts from XP-F patients were moderately sensitive to both UVC and HN2 compared to normal cells (2- to 3-fold and 3- to 5-fold, respectively). XP-A fibroblasts were considerably more sensitive to UVC (10- to 12-fold) but not sensitive to HN2. The sensitivity of XP-F fibroblasts to HN2 correlated with the defective incision or 'unhooking' step of ICL repair. Using the comet assay, XP-F cells exhibited only 20% residual unhooking activity over 24 h. Over the same time, normal and XP-A cells unhooked greater than 95% and 62% of ICLs, respectively. After HN2 treatment, ICL-associated DNA double-strand breaks (DSBs) are detected by pulse field gel electrophoresis in dividing cells. Induction and repair of DNA DSBs was normal in XP-F fibroblasts. These findings demonstrate that in primary human fibroblasts, XPF is required for the unhooking of ICLs and not for the induction or repair of ICL-associated DNA DSBs induced by HN2. In terms of cancer chemotherapy, people with mild DNA repair defects affecting ICL repair may be more prevalent in the general population than expected. Since cellular sensitivity of primary human fibroblasts usually reflects clinical sensitivity such patients with cancer would be at risk of increased toxicity. 相似文献
16.
The preparation and physical properties of short DNA duplexes that contain a N(4)C-ethyl-N(4)C interstrand cross-link are described. Duplexes that contain an interstrand cross-link between mismatched C-C residues and duplexes in which the C residues of a -CG- or -GC- step are linked to give "staggered" interstrand cross-links were prepared using a novel N(4)C-ethyl-N(4)C phosphoramidite reagent. Duplexes with the C-C mismatch cross-link have UV thermal transition temperatures that are 25 degrees C higher than the melting temperatures of control duplexes in which the cross-link is replaced with a G-C base pair. It appears that this cross-link stabilizes adjacent base pairs and does not perturb the structure of the helix, a conclusion that is supported by the CD spectrum of this duplex and by molecular models. An even higher level of stabilization, 49 degrees C, is seen with the duplex that contains a -CG- staggered cross-link. Molecular models suggest that this cross-link may induce propeller twisting in the cross-linked base pairs, and the CD spectrum of this duplex exhibits an unusual negative band at 298 nm, although the remainder of the spectrum is similar to that of B-form DNA. Mismatched C-C or -CG- staggered cross-linked duplexes that have complementary overhanging ends can undergo self-ligation catalyzed by T4 DNA ligase. Analysis of the ligated oligomers by nondenaturing polyacrylamide gel electrophoresis shows that the resulting oligomers migrate in a manner similar to that of a mixture of non-cross-linked control oligomers and suggests that these cross-links do not result in significant bending of the helix. However, the orientation of the staggered cross-link can have a significant effect on the structure and stability of the cross-linked duplex. Thus, the thermal stability of the duplex that contains a -GC- staggered cross-link is 10 degrees C lower than the melting temperature of the control, non-cross-linked duplex. Unlike the -CG- staggered cross-link, in which the cross-linked base pairs can still maintain hydrogen bond contacts, molecular models suggest that formation of the -GC- staggered cross-link disrupts hydrogen bonding and may also perturb adjacent base pairs leading to an overall reduction in helix stability. Duplexes with specifically positioned and oriented cross-links can be used as substrates to study DNA repair mechanisms. 相似文献
17.
Repair of intermediate structures produced at DNA interstrand cross-links in Saccharomyces cerevisiae
下载免费PDF全文

Bifunctional alkylating agents and other drugs which produce DNA interstrand cross-links (ICLs) are among the most effective antitumor agents in clinical use. In contrast to agents which produce bulky adducts on only one strand of the DNA, the cellular mechanisms which act to eliminate DNA ICLs are still poorly understood, although nucleotide excision repair is known to play a crucial role in an early repair step. Using haploid Saccharomyces cerevisiae strains disrupted for genes central to the recombination, nonhomologous end-joining (NHEJ), and mutagenesis pathways, all these activities were found to be involved in the repair of nitrogen mustard (mechlorethamine)- and cisplatin-induced DNA ICLs, but the particular pathway employed is cell cycle dependent. Examination of whole chromosomes from treated cells using contour-clamped homogenous electric field electrophoresis revealed the intermediate in the repair of ICLs in dividing cells, which are mostly in S phase, to be double-strand breaks (DSBs). The origin of these breaks is not clear since they were still efficiently induced in nucleotide excision and base excision repair-deficient, mismatch repair-defective, rad27 and mre11 disruptant strains. In replicating cells, RAD52-dependent recombination and NHEJ both act to repair the DSBs. In contrast, few DSBs were observed in quiescent cells, and recombination therefore seems dispensable for repair. The activity of the Rev3 protein (DNA polymerase zeta) is apparently more important for the processing of intermediates in stationary-phase cells, since rev3 disruptants were more sensitive in this phase than in the exponential growth phase. 相似文献
18.
19.
Saffran WA Ahmed S Bellevue S Pereira G Patrick T Sanchez W Thomas S Alberti M Hearst JE 《The Journal of biological chemistry》2004,279(35):36462-36469
The repair of psoralen interstrand cross-links in the yeast Saccharomyces cerevisiae involves the DNA repair groups nucleotide excision repair (NER), homologous recombination (HR), and post-replication repair (PRR). In repair-proficient yeast cells cross-links induce double-strand breaks, in an NER-dependent process; the double-strand breaks are then repaired by HR. An alternate error-prone repair pathway generates mutations at cross-link sites. We have characterized the repair of plasmid molecules carrying a single psoralen cross-link, psoralen monoadduct, or double-strand break in yeast cells with deficiencies in NER, HR, or PRR genes, measuring the repair efficiencies and the levels of gene conversions, crossing over, and mutations. Strains with deficiencies in the NER genes RAD1, RAD3, RAD4, and RAD10 had low levels of cross-link-induced recombination but higher mutation frequencies than repair-proficient cells. Deletion of the HR genes RAD51, RAD52, RAD54, RAD55, and RAD57 also decreased induced recombination and increased mutation frequencies above those of NER-deficient yeast. Strains lacking the PRR genes RAD5, RAD6, and RAD18 did not have any cross-link-induced mutations but showed increased levels of recombination; rad5 and rad6 cells also had altered patterns of cross-link-induced gene conversion in comparison with repair-proficient yeast. Our observations suggest that psoralen cross-links can be repaired by three pathways: an error-free recombinational pathway requiring NER and HR and two PRR-dependent error-prone pathways, one NER-dependent and one NER-independent. 相似文献
20.
Unique properties of purine/pyrimidine asymmetric PNA.DNA duplexes: differential stabilization of PNA.DNA duplexes by purines in the PNA strand
下载免费PDF全文

PNA.DNA duplexes are significantly stabilized by purine nucleobases in the PNA strand. To elucidate and understand the effect of switching the backbone in a nucleic acid duplex, we now report a thermodynamics study along with a solution conformations study of two purine/pyrimidine strand asymmetric duplexes and a strand symmetrical control by comparing the behavior of all four possible PNA/DNA combinations. In essence, we are comparing an identical basepair stack connected by either an aminoethyl glycine PNA or a deoxyribose DNA backbone. We show that the PNA.DNA duplexes containing purine-rich PNA strands are stabilized with regard to the thermal melting temperature and free energy as well as enthalpy (and concomitantly relatively less entropically disfavored). Based on our data, we find it unlikely that differences in counterion binding (identical ionic-strength dependence was observed), hydration (identical and insignificant water release was observed), or single-strand conformation can be responsible for the difference in duplex stability. The only consistent difference observed between the purine-rich PNA versus the pyrimidine-rich PNA in isosequential PNA.DNA duplexes is the significant increase in both binding enthalpy and entropy for the PNA.DNA duplexes containing pyrimidine-rich PNA in organic solvent, which would indicate that these duplexes are relatively enthalpically disfavored in water. Although our results so far do not allow us to identify the origin of the different stabilities of homopurine/homopyrimidine PNA.DNA duplexes, the evidence does point to a significant structural component, which involves enthalpic contributions both within the duplex structure and also from bound water molecules. 相似文献