首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of temperature and cholesterol on the membrane fluidity of human erythrocytes were studied using 5-nitroxide stearic acid (5NS), 12-nitroxide stearic acid (12NS), and 16-nitroxide stearic acid (16NS). Human erythrocytes and their lipid vesicles were treated in the range of 5--55 degrees C. In erythrocytes, ESR signals for 12NS and 16NS showed line broadening above 40 degrees C, whereas those for 5NS became sharper with increasing temperature as was the case with the signals of lipid vesicles for each label molecule. Lipid extraction from the heated sample caused no radical reduction. Only in 12NS-labeled erythrocytes did a weakly immobilized component and a strongly immobilized component appear. In the time course at 50 degrees C, the former decreased and the latter remained constant. From the ratio of both components, it was found that the interaction of the label molecules with the binding sites was determined by the physical state of the membrane. Furthermore, the dependence on temperature of the molecular motion of the labels in the cell membrane was irreversible above 40 degrees C. On addition of cholesterol to the membrane, the outer hyperfine splittings for 12NS and 16NS increased but that for 5NS decreased at C/P greater than 1, perhaps indicating a spread between the head groups of phospholipids by cholesterol.  相似文献   

2.
The conformation and stability of purified preparations of band 3, the anion transport protein of human erythrocyte membranes, and its constituent proteolytic subfragments have been studied by circular dichroism. Band 3, purified in the presence of the nonionic detergent n-dodecyl octaethylene glycol monoether (C12E8), had an alpha-helical content of 46%. Denaturation of purified band 3 with guanidine hydrochloride occurred in two phases, one reflecting much more resistance to denaturation than the other. Band 3 can be separated into two domains by limited in situ proteolytic cleavage. The carboxyl-terminal membrane-associated domain (Mr 55 000) purified in C12E8 contained 58% alpha-helix and was very resistant to denaturation by guanidine hydrochloride. The purified amino-terminal, cytoplasmic domain (Mr 41 000) contained 27% alpha-helix and was completely converted to a random-coil conformation by 3 M guanidine hydrochloride. The two phases of denaturation observed for intact band 3 corresponded to the two domains of the protein. Irreversible heat denaturation of purified band 3 occurred with half-maximal change in theta 222.5 at 48 degrees C. Covalent attachment of the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate to band 3 had little effect on the circular dichroism spectra of band 3 or the membrane-associated domain but resulted in stabilization of band 3 to heat denaturation (half-maximal change in theta 222.5 = 61 degrees C). Circular dichroism studies of membranes that had been digested extensively with proteolytic enzymes and stripped of all extrinsic fragments revealed that the portions of red cell membrane proteins that are embedded in the lipid bilayer contain a very high (86-94%) content of alpha-helix.  相似文献   

3.
4.
The anion transport system of human red blood cells was isolated in vesicles containing the original lipids of the membrane and predominantly the 95,000-dalton polypeptides (Band 3) associated with intralipid particles. The vesicles display various characteristic properties of anion permeation closely resembling those of the native system. The properties include energy of activation, pH dependence, anion sleectivity, sensitivity to specific inhibitors, and exchange and net rates of sulfate transport. Based on these and other criteria, the functional properties of isolated vesicles could be equated with those of the intact cell system. Direct support for the involvement of 95,000-dalton polypeptides in permeation functions is provided.  相似文献   

5.
Daily application of cortisone acetate (10mg/100g body wt.) or L-tri-iodothyronine (20 microng/100g body wt.) to female rats in the last (third) week of pregnancy elicits a precocious appearance of jejunal sucrase in their foetuses.  相似文献   

6.
7.
Effects of lead on the human erythrocyte membrane and molecular models   总被引:1,自引:0,他引:1  
Lead has no biological function; however, low, and particularly, high levels of exposure have a number of negative consequences for human health. Despite the number of reports about lead toxicity, very little information has been obtained regarding its effects on cell membranes. For this reason, the structural effects of lead on the human erythrocyte membranes were investigated. This aim was attained by making lead ions interact with intact erythrocytes, isolated unsealed erythrocyte membranes (IUM) and molecular models. The latter consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representing phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane. The results, obtained by electron microscopy, fluorescence spectroscopy and X-ray diffraction, indicated that (a) lead particles adhered to the external and internal surfaces of the human erythrocyte membrane; (b) lead ions disturbed the lamellar organization of IUM and DMPC large unilamellar vesicles (LUV) and (c) induced considerable molecular disorder in both lipid multilayers, the effects being much more pronounced in DMPC.  相似文献   

8.
Summary The interaction between chloride and the anion transport inhibitor DNDS (4,4-dinitro stilbene-2,2-disulfonate) at the external anion binding site of the human erythrocyte anion transporter was examined by two techniques: a) chloride tracer flux experiments in the presence of varying concentrations of DNDS, and b) DNDS equilibrium binding experiments in the presence of varying concentrations of intracellular and extracellular chloride, Cl i and Cl o . DNDS inhibited competitively the Cl o -stimulated chloride efflux from intact red cells at 0°C and pH 7.8 with an inhibitor constant of 90nm. Under the same conditions DNDS bound reversibly to one class of binding sites on intact cells with a capacity of 8.5×105 molecules/cell. Cl o competitively inhibited DNDS binding with an inhibitor constant of 6mm. In the absence of Cl o the DNDS binding constant was 84mm. The competition between chloride and DNDS was also tested in nystatintreated cells in which Cl o always equaled Cl i . Under these conditions the values of the DNDS binding constant and the chloride inhibitor constant were significantly larger. All these data were in quantitative agreement with a single-site, alternating access kinetic scheme with ping-pong-type kinetics that we have previously developed for modeling chloride exchange transport. The data also served to rule out special cases of an alternative two-sited sequential-type kinetic scheme. DNDS binding experiments were also performed at 10 and 20°C. We found that neither the DNDS binding constant nor the Cl o inhibitor constant were significantly changed compared to 0°C.  相似文献   

9.
10.
11.
Band 3 (Mr = 95,000), the anion transport protein of human erythrocyte membranes exists primarily as a dimer in solutions of nonionic detergents such as octaethylene glycol mono-n-dodecyl ether (C12E8). The role of the oligomeric structure of Band 3 in the binding of [14C]4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS), an inhibitor of anion transport (Ki = 1-2 microM), was studied by characterizing the interaction of BADS with dimers and monomers of Band 3 covalently attached to p-mercuribenzoate-Sepharose 4B. BADS bound to matrix-bound Band 3 dimers with an affinity of approximately 3 microM at a stoichiometry of 1 BADS molecule/Band 3 monomer, in agreement with the BADS binding characteristic of Band 3 in the membrane and in solutions of C12E8. Band 3 dimers could be attached to the matrix via one subunit by limiting the amount of p-chloromercuribenzoate on the Sepharose bead. Matrix-bound monomers were formed by dissociation of the dimers with dodecyl sulfate or guanidine hydrochloride. Complete removal of the denaturants allowed formation of refolded Band 3 monomers since the matrix-bound subunits could not reassociate. These refolded Band 3 monomers were unable to bind BADS. Release of the monomers from the matrix with 2-mercaptoethanol allowed reformation of dimers with recovery of the BADS binding sites. These results suggest that the dimeric structure of Band 3 is required for BADS binding and that the BADS binding sites may be at the interface between the two halves of the Band 3 dimer.  相似文献   

12.
Bromosulphophthalein and N-ethylmaleimide, inhibitors of glutathione S-transferase (EC 2.5.1.18 RX: glutathione R. transferase), have been used to identify variant forms of the erythrocyte enzyme. One 'atypical' sample was detected and was shown to have appreciably different kinetic and stability properties. These inhibitors may be useful in surveys of variation in this group of enzymes.  相似文献   

13.
At least two kinds of enzymes are active in the proteolytic self-digestion of erythrocyte membranes. The specific activities of these enzymes do not decrease with repeated washings of purified stroma. The effects of a variety of inhibitors on the membrane preparation's capacity to digest 125I-labelled casein, covalently linked to latex beads, have been examined.Pepstatin-inhibitable enzyme, active at low pH, digests the membrane extensively to small polypeptide fragments. Spectrin, located at the internal part of the membrane, is readily degraded. Diisopropylfluorophosphate-inhibitable enzyme, active at pH 8–9, has only limited digestive capacity. Some of the membrane components, such as the small molecular weight glycoproteins, are resistant to digestion. The restricted capacity of digestion is due to the membrane molecular arrangement; increased disaggregation removes the restriction and increases the activity. Spectrin is not digested unless the membrane topography is disrupted by NP-40 neutral detergent. These observations suggest that the enzymes active at basic pH are located external to the cell. Intact cells do possess a limited capacity to degrade 125I-labelled casein when their surfaces are brought into contact with substrate-coated beads.  相似文献   

14.
The exposure of the carboxyl-terminal of the Band 3 protein of human erythrocyte membranes in intact cells and membrane preparations to proteolytic digestion was determined. Carboxypeptidase Y digestion of purified Band 3 in the presence of non-ionic detergent released amino acids from the carboxyl-terminal of Band 3. The release of amino acids was very pH dependent, digestion being most extensive at pH 3, with limited digestion at pH 6 or above. The 55,000 dalton carboxyl-terminal fragment of Band 3, generated by mild trypsin digestion of ghost membranes, had the same carboxyl-terminal sequence as intact Band 3, based on carboxypeptidase Y digestion. Treatment of intact cells with trypsin or carboxypeptidase Y did not release any amino acids from the carboxyl-terminal of Band 3. In contrast, carboxypeptidase Y readily digested the carboxyl-terminal of Band 3 in ghosts that were stripped of extrinsic membrane proteins by alkali or high salt. This was shown by a decrease in the molecular weight of a carboxyl-terminal fragment of Band 3 after carboxypeptidase Y digestion of stripped ghost membranes. No such decrease was observed after carboxypeptidase Y treatment of intact cells. In addition, Band 3 purified from carboxypeptidase Y-treated stripped ghost membranes had a different carboxyl-terminal sequence from intact Band 3. Cleavage of the carboxyl-terminal of Band 3 was also observed when non-stripped ghosts or inside-out vesicles were treated with carboxypeptidase Y. However, the digestion was less extensive. These results suggest that the carboxyl-terminal of Band 3 may be protected from digestion by its association with extrinsic membrane proteins. We conclude, therefore, that the carboxyl-terminal of Band 3 is located on the cytoplasmic side of the red cell membrane. Since the amino-terminal of Band 3 is also located on the cytoplasmic side of the erythrocyte membrane, the Band 3 polypeptide crosses the membrane an even number of times. A model for the folding of Band 3 in the erythrocyte membrane is presented.  相似文献   

15.
The parallel effects of the anion transport inhibitor DIDS (4,4'- diisothiocyanostilbene-2,2'-disulfonate) on net chloride flow and on chloride exchange suggest that a major portion of net chloride flow takes place through the anion exchange system. The "slippage" model postulates that the rate of net anion flow is determined by the movement of the unloaded anion transport site across the membrane. Both the halide selectivity of net anion flow and the dependence of net chloride flux on chloride concentration over the range of 75 to 300 mM are inconsistent with the slippage model. Models in which the divalent form of the anion exchange carrier or water pores mediate net anion flow are also inconsistent with the data. The observations that net chloride flux increases with chloride concentration and that the DIDS- sensitive component tends to saturate suggest a model in which net anion flow involves "transit" of anions through the diffusion barriers in series with the transport site, without any change in transport site conformation such as normally occurs during the anion exchange process. This model is successful in predicting that the anion exchange inhibitor NAP-taurine, which binds to the modifier site and inhibits the conformational change, has less effect on net chloride flow than on chloride exchange.  相似文献   

16.
K K Wong  J S Blanchard 《Biochemistry》1989,28(8):3586-3590
Human erythrocyte glutathione reductase catalyzes the pyridine nucleotide dependent reduction of oxidized glutathione (GSSG). The pH dependence of the kinetic parameters V and V/K for three reduced pyridine nucleotide substrates, the Ki's for three competitive inhibitors (versus NADPH), and the temperature dependence of the V pH profile have been determined. Below pH 8, V and V/K for NADPH, 2',3'-cyclic-NADPH, and NADH are pH independent. In the basic pH region, both V and V/K for the three substrates are pH dependent. All three of the V profiles decrease with increasing pH as a group with a pKa of approximately 9.2 is titrated. The V/K profiles for NADPH, 2',3'-cyclic-NADPH, and NADH decrease at high pH as a group with a pKa of greater than 9.8, 8.9, and 8.8, respectively, is deprotonated. The Ki's for ATP-ribose and 2',5'-ADP are pH independent below pH 8 but increase in the basic region as a group with a pKa of about 8.8 and 8.5, respectively, is deprotonated. The Ki of AADP is pH independent between pH 6 and 9. These studies suggest that binding interactions between the 2'-phosphate of NADPH and the enzyme are predominately nonionic. The temperature dependence of the pK observed in all V pH profiles allows the calculation of an enthalpy of ionization of 3.2 kcal/mol for this group. The high pK and low enthalpy of ionization suggest that the protonation state of the His-467'-Glu-472' ion pair observed in the structure of human erythrocyte glutathione reductase influences proton-transfer steps occurring in the oxidative half-reaction.  相似文献   

17.
18.
Red blood cell membranes have been labeled with several covalent and non-covalent inhibitors of anion transport and their heat capacity profiles determined as a function of temperature. Covalent inhibitors include the amino reactive agents 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid, 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid, pyridoxal phosphate and 1-fluoro-2,4-dinitro benzene. The non-covalent inhibitors include several well known local anesthetics. The study was undertaken in order to identify regions of the membrane involved in anion transport. Covalent modification in all cases resulted in a large upward shift of the C transition, which is believed to involved a localized phospholipid region. Evidence is presented which indicates that Band III protein and this phospholipid region are in close physical proximity on the membrane. Addition of non-covalent inhibitors affects the membrane in either or both of two ways. In some cases, a lowering and broadening of the C transition occurs; in other the B1 and B2 transitions are altered. These latter transitions are believed to involve both phospholipid and protein, including Band III. These results may indicate that the non-covalent inhibitors produce their inhibitory effect on anion transport at least in part by interacting with membrane phospholipid.  相似文献   

19.
The parameters describing the structural and functional state of membranes depending on the level of reduced glutathione in erythrocytes were studied. It was shown, that the decrease in the concentration of reduced intracellular glutathione in erythrocytes upon metabolic depletion (prolonged incubation of cells at 37 degrees C in the absence of glucose) or a rapid irreversible depletion of glutathione with 1-chloro-2,4-dinitrobenzene enhances lipid peroxidation processes in membranes, inhibits the membrane-bound NAD.H methemoglobin reductase activity and decreases the intensity of 1,6-diphenyl-1,3,5-hexatrien fluorescence. The data obtained suggest that the depletion of reduced intracellular glutathione causes changes in the physicochemical state of the erythrocyte membrane: the accumulation of lipid peroxidation products, changes in the physical state of lipid bilayer and the inhibition of membrane-bound NAD.H-methemoglobin reductase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号