首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Brachypodium is a small genus of temperate grasses that comprises 12–15 species. Brachypodium distachyon is now well established as a model species for temperate cereals and forage grasses. In contrast to B. distachyon, other members of the genus have been poorly investigated at the chromosome level or not at all.

Methods

Twenty accessions comprising six species and two subspecies of Brachypodium were analysed cytogenetically. Measurements of nuclear genome size were made by flow cytometry. Chromosomal localization of 18–5·8–25S rDNA and 5S rDNA loci was performed by dual-colour fluorescence in situ hybridization (FISH) on enzymatically digested root-tip meristematic cells. For comparative phylogenetic analyses genomic in situ hybridization (GISH) applied to somatic chromosome preparations was used.

Key Results

All Brachypodium species examined have rather small genomes and chromosomes. Their chromosome numbers and genome sizes vary from 2n = 10 and 0·631 pg/2C in B. distachyon to 2n = 38 and 2·57 pg/2C in B. retusum, respectively. Genotypes with 18 and 28 chromosomes were found among B. pinnatum accessions. GISH analysis revealed that B. pinnatum with 28 chromosomes is most likely an interspecific hybrid between B. distachyon (2n = 10) and B. pinnatum (2n = 18). Two other species, B. phoenicoides and B. retusum, are also allopolyploids and B. distachyon or a close relative seems to be one of their putative ancestral species. In chromosomes of all species examined the 45S rDNA loci are distally distributed whereas loci for 5S rDNA are pericentromeric.

Conclusions

The increasing significance of B. distachyon as a model grass emphasizes the need to understand the evolutionary relationships in the genus Brachypodium and to ensure consistency in the biological nomenclature of its species. Modern molecular cytogenetic techniques such as FISH and GISH are suitable for comparative phylogenetic analyses and may provide informative chromosome- and/or genome-specific landmarks.  相似文献   

2.
We have analyzed the phylogenetic and genomic relationships in the genus Setaria Beauv. including diploid and tetraploid species, by means of the molecular diversity of the 5S rDNA spacer and chromosomal organization of the 5S and 18S-5.8S-25S rDNA genes. PCR amplification of the 5S rDNA sequences gave specific patterns. All the species studied here share a common band of about 340 bp. An additional band of an approximately 300-bp repeat unit was found for Setaria verticillata and the Chinese accessions of Setaria italica and Setaria viridis. An additional band of 450 bp was found in the sole species Setaria faberii. Fluorescent in situ hybridization was used for physical mapping of the 5S and 18S-5.8S-25S rDNA genes and showed that they are localized at two separate loci with no polymorphism of chromosome location among species. Two chromosome pairs carrying the 5S and 18S-5.8S-25S rDNA clusters can now be unambiguously identified using FISH. Phylogenetic trees based on the variation of the amplified 5S rDNA sequences showed a clear separation into four groups. The clustering was dependent on the genomic composition (genome A versus genome B) and confirmed the closest relationship of S. italica and S. viridis accessions from the same geographical region. Our results confirm previous hypotheses on the domestication centers of S. italica. They also show the wide difference between the A and B genomes, and even clarify the taxonomic position of S. verticillata. Received: 28 August 2000 / Accepted: 27 January 2001  相似文献   

3.
4.
Fluorescent in situ hybridisation (FISH) was used to determine the number and distribution of the 18S-25S and 5S rDNA sites on mitotic chromosomes of 6 wild and 2 edible diploid (2n=22) accessions belonging to the two banana species, Musa acuminata and M. balbisiana. FISH with the 18S-25S probe resulted in signals on one pair of chromosomes, the position of signals corresponded to the secondary constriction at the end of a short arm. The intensity of labelling was different between the homologues and the larger site corresponded to a larger secondary constriction. This labelling pattern was observed consistently in all genotypes. On the other hand, differences in the number of 5S sites were observed between the accessions. While in some of the wild seeded species, the 5S rDNA was localised on two pairs of chromosomes, hybridisation signals appeared on three pairs of chromosomes in other wild accessions. Quite unexpectedly, only five sites of 5S rDNA were reproducibly observed in the two vegetatively propagated diploid edible cultivars, Pisang Mas and Niyarma Yik, evidence for structural heterozygosity. A dual colour FISH showed that in all accessions, the satellite chromosomes carrying the 18S-25S loci did not carry the 5S loci. The results demonstrate that molecular cytogenetics can be applied to Musa and that physical cytogenetic maps can be generated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Shoot organogenesis was induced from 2- and 6-week-old callus derived from the leaves of Arabidopsis thaliana ecotype Columbia (2n = 10). Regenerated plants were evaluated for chromosomal variations by means of flow cytometry and fluorescent in situ hybridization (FISH). Flow cytometric measurements revealed the occurrence of diploid, tetraploid, and octoploid plants among the regenerants of 2-week-old calli, whereas only diploid and tetraploid plants were regenerated from the 6-week-old calli. Chromosome counting showed that plants developed from the 2-week-old calli exhibited mixoploidy and a high frequency of aneuploid cells. These plants were infertile and displayed altered morphology. FISH with 5S and 25S rDNA probes allowed to detect some structural chromosomal rearrangements in regenerated plants. Along with cells which exhibited correct localisation of rDNA loci, also cells bearing chromosomal translocations, deletions or duplications were found. The type of structural aberrations varied between diploid and tetraploid regenerants.  相似文献   

6.
The most widely cultivated species of cotton,Gossypium hirsutum, is a disomic tetraploid (2n=4x=52). It has been proposed previously that extant A- and D-genome species are most closely related to the diploid progenitors of the tetraploid. We used fluorescent in situ hybridization (FISH) to determine the distribution of 5S and 18S-28S rDNA loci in the A-genome speciesG. herbaceum andG. arboreum, the D-genome speciesG. raimondii andG. thurberi, and the AD tetraploidG. hirsutum. High signal-to-noise, single-label FISH was used to enumerate rDNA loci, and simultaneous, dual-label FISH was used to determine the syntenic relationships of 5S rDNA loci relative to 18S–28S rDNA loci. These techniques provided greater sensitivity than our previous methods and permitted detection of six newG. hirsutum 18S–28S rDNA loci, bringing the total number of observed loci to 11. Differences in the intensity of the hybrizization signal at these loci allowed us to designate them as major, intermediate, or minor 18–28S loci. Using genomic painting with labeled A-genome DNA, five 18S–28S loci were localized to theG. hirsutum A-subgenome and six to the D-subgenome. Four of the 11 18S–28S rDNA loci inG. hirsutum could not be accounted for in its presumed diploid progenitors, as both A-genome species has three loci and both D-genome species had four.G. hirsutum has two 5S rDNA loci, both of which are syntenic to major 18S–28S rDNA loci. All four of the diploid genomes wer examined contained a single 5S locus. InG. herbaceum (A1) andG. thurberi (D1), the 5S locus is syntenic to a major 18S–28S locus, but inG. arboreum (A2) andG. raimondii (D5), the proposed D-genome progenitor ofG. hirsutum, the 5S loci are syntenic tominor and intermediate 18S–28S loci, respecitively. The multiplicity, variation in size and site number, and lack of additivity between the tetraploid species and its putative diploid ancestors indicate that the behavior of rDNA loci in cotton is nondogmatic, and considerably more complex and dynamic than previously envisioned. The relative variability of 18S–28S rDNA loci versus 5S rDNA loci suggests that the behavior of tandem repearts can differ widely. Edited by: R. Appels  相似文献   

7.
A physical map of the locations of the 5S rDNA genes and their relative positions with respect to 18S-5.8S-26S rDNA genes and a C genome specific repetitive DNA sequence was produced for the chromosomes of diploid, tetraploid, and hexaploid oat species using in situ hybridization. The A genome diploid species showed two pairs of rDNA loci and two pairs of 5S loci located on both arms of one pair of satellited chromosomes. The C genome diploid species showed two major pairs and one minor pair of rDNA loci. One pair of subtelocentric chromosomes carried rDNA and 5S loci physically separated on the long arm. The tetraploid species (AACC genomes) arising from these diploid ancestors showed two pairs of rDNA loci and three pairs of 5S loci. Two pairs of rDNA loci and 2 pairs of 5S loci were arranged as in the A genome diploid species. The third pair of 5S loci was located on one pair of A-C translocated chromosomes using simultaneous in situ hybridization with 5S rDNA genes and a C genome specific repetitive DNA sequence. The hexaploid species (AACCDD genomes) showed three pairs of rDNA loci and six pairs of 5S loci. One pair of 5S loci was located on each of two pairs of C-A/D translocated chromosomes. Comparative studies of the physical arrangement of rDNA and 5S loci in polyploid oats and the putative A and C genome progenitor species suggests that A genome diploid species could be the donor of both A and D genomes of polyploid oats. Key words : oats, 5S rDNA genes, 18S-5.8S-26S rDNA genes, C genome specific repetitive DNA sequence, in situ hybridization, genome evolution.  相似文献   

8.
9.
Fluorescent in situ hybridization (FISH) was applied to diploid and tetraploid subspecies of alfalfa (Medicago sativa L.) to investigate the distribution of rRNA genes and to utilize the sites of 18S-5.8S-25S rDNA and 5S rDNA sequences as markers for studying the genome evolution within the species. Medicago glomerata Balb., the species considered to be the ancestor of alfalfa, was included in this study in order to obtain more information on the phylogenetics of alfalfa. Simultaneous in situ hybridization was performed with the probes pTa71 and pXVI labeled with digoxigenin and biotin, respectively. In the diploid taxa, M. glomerata, M. sativa ssp. coerulea Schmalh and ssp. falcata Arcangeli, the 18S-5.8S-25S rDNA sequences were mapped to two sites corresponding to the secondary constrictions of the nucleolar chromosome pair, while 5S rDNA appeared to be distributed in two pairs of sites. Chromosomes carrying 5S loci could be distinguished on the basis of their morphological characteristics. The number of rDNA sites detected in the tetraploid M. sativa ssp. falcata and ssp. sativa (L.) L. & L. were twice the number found in the respective diploid ssp. falcata and ssp. coerulea. The results of this study show that the distribution of ribosomal genes was maintained during the evolutionary steps from the primitive diploid to the cultivated alfalfa. Modifications of the number of rRNA loci were not observed. The importance of in situ hybridization for improving karyotype analysis in M. sativa L. is discussed.  相似文献   

10.
Y Sang  G H Liang 《Génome》2000,43(5):918-922
The physical locations of the 18S-5.8S-26S rDNA sequences were examined in three sorghum species by fluorescence in situ hybridization (FISH) using biotin-labeled heterologous 18S-5.8S-26S rDNA probe (pTa71). Each 18S-5.8S-26S rDNA locus occurred at two sites on the chromosomes in Sorghum bicolor (2n = 20) and S. versicolor (2n = 10), but at four sites on the chromosomes of S. halepense (2n = 40) and the tetraploid S. versicolor (2n = 20). Positions of the rDNA loci varied from the interstitial to terminal position among the four accessions of the three sorghum species. The rDNA data are useful for investigation of chromosome evolution and phylogeny. This study excluded S. versicolor as the possible progenitor of S. bicolor.  相似文献   

11.
为了探寻蔷薇属植物亲缘关系及系统发育研究的分子细胞遗传学证据,该研究采用双色FISH(荧光原位杂交)技术,对原产中国7个组的17种蔷薇属植物的45S和5S rDNA进行了定位分析。结果表明:(1)多数蔷薇属植物1组染色体对应1个45S rDNA位点和1个或2个5S rDNA位点,偶尔出现1~2个rDNA位点的丢失,但复伞房蔷薇(Rosa brunonii)的1组染色体对应了2个45S rDNA位点。(2)二倍体的蔷薇属植物至少有1对5S rDNA位点与45S rDNA位点共定位,而四倍体材料的5S rDNA位点与45S rDNA位点没有共定位,但所有四倍体材料均至少有1种rDNA信号纯合,表明它们应为二倍体直接加倍产生的同源四倍体。(3)绝大多数材料45S rDNA位于染色体短臂、5S rDNA位于染色体长臂,但缫丝花(R. roxburghii f. roxburghii)有1个5S rDNA信号位于染色体的短臂上,表明它与蔷薇属其他种的亲缘关系较远。(4)阿克苏地区和伊犁地区的疏花蔷薇的核型不同,且45S和5S rDNA的数量和位置不同,分子细胞遗传学证据也支持阿克苏地区的疏花蔷薇应为疏花蔷薇的新变种。(5)该研究中共有8个二倍体和6个四倍体蔷薇属植物的双色FISH为首次报道。研究认为,无论二倍体还是四倍体蔷薇属植物中出现的异形同源染色体、rDNA信号位置在同源染色体上的差异以及rDNA信号的增加和丢失,可能都与染色体结构变异和染色体重组有关,在分子细胞遗传学水平上证明染色体结构变异和染色体重组在蔷薇属植物演化过程中具有重要的作用。  相似文献   

12.
The diploid Emila sonchifolia (2n = 10) and the tetraploid E. fosbergii (2n = 20) species are widely distributed throughout tropical and subtropical America, and are the only two Emilia species occurring in Brazil. Emilia fosbergii displays two sets of ten chromosomes, one slightly larger than the other. The smaller chromosome set is similar to the chromosome complement of the diploid, which agrees with the suggested participation of E. sonchifolia in the formation of E. fosbergii. To elucidate this hypothesis, the relationship between the genomes of the two species was investigated using chromomycin A3 (CMA)/4’,6-diamidino-2-phenylindole (DAPI) double staining, distribution of 5S and 45S rDNA sites by fluorescence in situ hybridization (FISH) and whole genome comparison by genomic in situ hybridization (GISH). CMA/DAPI staining and FISH revealed the occurrence of one pair of CMA bands in E. sonchifolia and three pairs in E. fosbergii, all of them co-localized with 45S rDNA sites. Additionally, E. fosbergii displayed a fourth, small 45S rDNA site in its larger subgenome which was not detected as CMA band. Surprisingly, the euchromatin of the smaller subgenome of E. fosbergii stained less intensely with CMA than the larger one. The GISH procedure demonstrated the similarity between the genome of E. sonchifolia and the smaller chromosome set of E. fosbergii. GISH and CMA staining clearly demonstrate that E. fosbergii is an allotetraploid species and suggest E. sonchifolia as one of its ancestors. The maintenance of at least one pair of 5S and 45S rDNA sites per subgenome of E. fosbergii and the differentiation between its subgenomes by CMA staining seem to indicate that post-polyploidization changes are still incipient, probably because the polyploidization event and the origin of E. fosbergii were relatively recent.  相似文献   

13.
* BACKGROUND AND AIMS: The genus Hordeum exists at three ploidy levels (2x, 4x and 6x) and presents excellent material for investigating the patterns of polyploid evolution in plants. Here the aim was to clarify the ancestry of American polyploid species with the I genome. * METHODS: Chromosomal locations of 5S and 18S-25S ribosomal RNA genes were determined by fluorescence in situ hybridization (FISH). In both polyploid and diploid species, variation in 18S-25S rDNA repeated sequences was analysed by the RFLP technique. * KEY RESULTS: Six American tetraploid species were divided into two types that differed in the number of rDNA sites and RFLP profiles. Four hexaploid species were similar in number and location of both types of rDNA sites, but the RFLP profiles of 18S-25S rDNA revealed one species, H. arizonicum, with a different ancestry. * CONCLUSIONS: Five American perennial tetraploid species appear to be alloploids having the genomes of an Asian diploid H. roshevitzii and an American diploid species. The North American annual tetraploid H. depressum is probably a segmental alloploid combining the two closely related genomes of American diploid species. A hexaploid species, H. arizonicum, involves a diploid species, H. pusillum, in its ancestry; both species share the annual growth habit and are distributed in North America. Polymorphisms of rDNA sites detected by FISH and RFLP analyses provide useful information to infer the phylogenetic relationships of I-genome Hordeum species because of their highly conserved nature during polyploid evolution.  相似文献   

14.
The location of 5S and 35S rDNA sequences in chromosomes of four Aconitum subsp. Aconitum species was analyzed after fluorescence in situ hybridization (FISH). Both in diploids (2n?=?2x?=?16; Aconitum variegatum, A. degenii) and tetraploids (2n?=?4×?=?32; A. firmum, A. plicatum), rDNA repeats were localized exclusively on the shorter arms of chromosomes, in subterminal or pericentromeric sites. All analyzed species showed similar basal genome size (Cx?=?5.31–5.71 pg). The most striking features of tetraploid karyotypes were the conservation of diploid rDNA loci and emergence of many additional 5S rDNA clusters. Chromosomal distribution of excessive ribosomal sites suggests their role in the secondary diploidization of tetraploid karyotypes.  相似文献   

15.

Background and Aims

The organization of rDNA genes in the woody medic species from the agronomically important Medicago section Dendrotelis was analysed to gain insight into their taxonomic relationships, to assess the levels of infraspecific variation concerning ribosomal loci in a restricted and fragmented insular species (M. citrina) and to assess the nature of its polyploidy.

Methods

Fluorescence in situ hybridization (FISH) was used for physical mapping of 5S and 45S ribosomal DNA genes in the three species of section Dendrotelis (M. arborea, M. citrina, M. strasseri) and the related M. marina from section Medicago. Genomic in situ hybridization (GISH) was used to assess the genomic relationships of the polyploid M. citrina with the putatively related species from section Dendrotelis.

Key Results

The diploid (2n = 16) M. marina has a single 45S and two 5S rDNA loci, a pattern usually detected in previous studies of Medicago diploid species. However, polyploid species from section Dendrotelis depart from expectations. The tetraploid species (2n = 32) M. arborea and M. strasseri have one 45S rDNA locus and two 5S rDNA loci, whereas in the hexaploid (2n = 48) M. citrina four 45S rDNA and five 5S rDNA loci have been detected. No single chromosome of M. citrina was uniformly labelled after using genomic probes from M. arborea and M. strasseri. Instead, cross-hybridization signals in M. citrina were restricted to terminal chromosome arms and NOR regions.

Conclusions

FISH results support the close taxonomic interrelationship between M. arborea and M. strasseri. In these tetraploid species, NOR loci have experienced a diploidization event through physical loss of sequences, a cytogenetic feature so far not reported in other species of the genus. The high number of rDNA loci and GISH results support the specific status for the hexaploid M. citrina, and it is suggested that this species is not an autopolyploid derivative of M. arborea or M. strasseri. Further, molecular cytogenetic data do not suggest the hypothesis that M. arborea and M. strasseri were involved in the origin of M. citrina. FISH mapping can be used as an efficient tool to determine the genomic contribution of M. citrina in somatic hybrids with other medic species.Key words: Medicago arborea, M. citrina, M. strasseri, rRNA genes, 18S-5·8S-25-S, 5S, FISH mapping, GISH, polyploidy  相似文献   

16.
Ribosomal RNA (5S and 45S) genes were investigated by FISH in two related legumes: soybean [Glycine max (L.) Merr.] and common bean (Phaseolis vulgaris L.). These species are both members of the same tribe (Phaseoleae), but common bean is diploid while soybean is a tetraploid which has undergone diploidization. In contrast to ploidy expectations, soybean had only one 5S and one 45S rDNA locus whereas common bean had more than two 5S rDNA loci and two 45S rDNA loci. Double hybridization experiments with differentially labelled probes indicated that the soybean 45S and 5S rDNA loci are located on different chromosomes and in their distal regions. Likewise, the common bean 45S and 5S rDNA loci were on unique chromosomes, though two of the 5S rDNA loci were on the same chromosome. FISH analysis of interphase nuclei revealed the spatial arrangement of rDNA loci and suggested expression patterns. In both species, we observed one or more 5S rDNA hybridization sites and two 45S rDNA hybridization sites associated with the nucleolar periphery. The 45S rDNA hybridization patterns frequently exhibited gene puffs as de-condensed chromatin strings within the nucleoli. The other condensed rDNA sites (both 5S and 45S) were spatially distant from the nucleolus in nucleoplasmic regions containing heterochromatin. The distribution of rDNA between the nucleoplasm and the nucleoli is consistent with differential gene expression between homologous alleles and among homoeologous loci.  相似文献   

17.
18.
We studied cacti species of the subfamilies Pereskioideae (five species of the southern clade) and both species of Maihuenioideae using molecular cytogenetic techniques and DNA content. Mitotic chromosomes were analyzed for Pereskia aculeata, P. bahiensis, P. grandifolia, P. nemorosa, P. sacharosa, Maihuenia poeppigii, and M. patagonica, using the Feulgen stain, CMA/DAPI fluorescent chromosome banding, fluorescence in situ hybridization (FISH, probes of 5S rDNA and pTa71 for 18-5.8-26S rDNA), and DNA content by flow cytometry technique. The karyotypes were highly symmetrical, most of the pairs being metacentric (m). CMA/DAPI banding revealed the presence of CMA+/DAPI? bands associated with NORs in the first m pair of all species. The co-localization of 18-5.8-26S rDNA loci with CMA+/DAPI?/NORs blocks allowed the identification of homeologous chromosome pairs between species of both subfamilies. FISH using probe 5S rDNA was applied for the first time in both subfamilies. Diploid species had always one m pair carrying 5S rDNA genes, with pericentromeric location in different chromosome pairs. In the tetraploid cytotype of M. patagonica, the 5S rDNA probe hybridized to two pairs. The 2C DNA content obtained by FC varied twofold (from 1.85 to 2.52 pg), with significant differences between species. Mean chromosome length, karyotype formula, percentage of heterochromatin position of 5S rDNA locus, and nuclear Cx DNA content vary among Maihuenia and Pereskia species and allowed to differentiate them. Both genera are closely related and that the differences found are not strong enough to separate Maihuenioideae from Pereskioideae.  相似文献   

19.
We investigated the locations of 5S and 45S rDNA in Gossypium diploid A, B, D, E, F, G genomes and tetraploid genome (AD) using multi-probe fluorescent in situ hybridization (FISH) for evolution analysis in Gossypium genus. The rDNA numbers and sizes, and synteny relationships between 5S and 45S were revealed using 5S and 45S as double-probe for all species, and the rDNA-bearing chromosomes were identified for A, D and AD genomes with one more probe that is single-chromosome-specific BAC clone from G. hirsutum (A1D1). Two to four 45S and one 5S loci were found in diploid-species except two 5S loci in G . incanum (E4), the same as that in tetraploid species. The 45S on the 7th and 9th chromosomes and the 5S on the 9th chromosomes seemed to be conserved in A, D and AD genomes. In the species of B, E, F and G genomes, the rDNA numbers, sizes, and synteny relationships were first reported in this paper. The rDNA pattern agrees with previously reported phylogenetic history with some disagreements. Combined with the whole-genome sequencing data from G . raimondii (D5) and the conserved cotton karyotype, it is suggested that the expansion, decrease and transposition of rDNA other than chromosome rearrangements might occur during the Gossypium evolution.  相似文献   

20.
The localization of 18S ribosomal RNA genes (rDNA) by fluorescence in situ hybridization (FISH) had been performed for some species of Paeonla. However, the pattern of 18S rDNA loci among populations Is Indistinct. In the present study, we localized 18S rDNA loci on meiotic or mitotic chromosomes of six populations of Paeonla obovata Maxim. (Paeonlaceae). Different numbers of rDNA loci were found with different diploid (2n=10) populations, namely eight (Lushl and Mt. JIuhua populations), 10 (Mt. Talbal population), and seven (Mt. Guandl population), whereas tetraplold (2n=20) populations were all found with 16 loci. Aii rDNA loci were mapped near teiomeres of mitotic chromosomes and there was no chromosome with two loci. The present results show that molecular cytological polymorphlsm exists among P. obovata diploid populations, Indicating that structural variations occurred frequently during the evolutionary history of this species, accompanied with differentiation among populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号