首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many helminths cause long-lasting infections, living for several years in mammalian hosts reflecting a well balanced coexistence between host and parasite. There are many possible explanations as to how they can survive for lengthy periods. One possibility is their antioxidant systems, which can serve as defence mechanisms against host-generated oxygen radicals. Therefore, the aim of this experimental study was to examine the antioxidant system in Hymenolepisdiminuta during short (1.5 months young tapeworms) and long (1.5 years old tapeworms) term infection in the rat small intestine.The strobilae of H. diminuta tapeworms (14 young and three old) were divided into three pieces: the anterior part, containing the genital primordiae in the immature segments; the medial part, containing the early uterus in the mature, hermaphroditic proglottids and the terminal part with the mature gravid uterus in the gravid segments. Supernatants of these fragments were used for determination of markers of oxidative stress: concentration of thiobarbiturate reactive substances (TBARS) and of reduced glutathione (GSH), and the activity of antioxidant enzymes: superoxide dismutase (SOD1 and SOD2), catalase (CAT), glutathione peroxidases (GSHPxs), glutathione transferase (GST) and glutathione reductase (GSHR).The results indicated changes in levels of oxidative stress markers and antioxidant enzyme activity in both the young and old forms of H. diminuta. Relatively high activity of SOD (particularly in the anterior part of young tapeworms) was observed, as was increased activity of total GSHPx and a relatively high concentration of GSH in all parts of the tapeworms. These are caused by exposure to increased amount of ROS, which are produced during the inflammatory state. Due to the high activity of antioxidant enzymes, the anterior section of young and old tapeworms is equipped with a very effective antioxidant system. Old organisms also effectively resist oxidative stress due to reduced levels of lipid peroxidation and the high activity of GST, all of which suggest good adaptation to the hostile environment in the host’s intestine.  相似文献   

2.

Background

Plasmodium falciparum -parasitized red blood cells (RBCs) are equipped with protective antioxidant enzymes and heat shock proteins (HSPs). The latter are only considered to protect against thermal stress. Important issues are poorly explored: first, it is insufficiently known how both systems are expressed in relation to the parasite developmental stage; secondly, it is unknown whether P. falciparum HSPs are redox-responsive, in view of redox sensitivity of HSP in eukaryotic cells; thirdly, it is poorly known how the antioxidant defense machinery would respond to increased oxidative stress or inhibited antioxidant defense. Those issues are interesting as several antimalarials increase the oxidative stress or block antioxidant defense in the parasitized RBC. In addition, numerous inhibitors of HSPs are currently developed for cancer therapy and might be tested as anti-malarials. Thus, the joint disruption of the parasite antioxidant enzymes/HSP system would interfere with parasite growth and open new perspectives for anti-malaria therapy.

Methods

Stage-dependent mRNA expression of ten representative P. falciparum antioxidant enzymes and hsp 60/70–2/70–3/75/90 was studied by quantitative real-time RT-PCR in parasites growing in normal RBCs, in RBCs oxidatively-stressed by moderate H2O2 generation and in G6PD-deficient RBCs. Protein expression of antioxidant enzymes was assayed by Western blotting. The pentosephosphate-pathway flux was measured in isolated parasites after Sendai-virus lysis of RBC membrane.

Results

In parasites growing in normal RBCs, mRNA expression of antioxidant enzymes and HSPs displayed co-ordinated stage-dependent modulation, being low at ring, highest at early trophozoite and again very low at schizont stage. Additional exogenous oxidative stress or growth in antioxidant blunted G6PD-deficient RBCs indicated remarkable flexibility of both systems, manifested by enhanced, co-ordinated mRNA expression of antioxidant enzymes and HSPs. Protein expression of antioxidant enzymes was also increased in oxidatively-stressed trophozoites.

Conclusion

Results indicated that mRNA expression of parasite antioxidant enzymes and HSPs was co-ordinated and stage-dependent. Secondly, both systems were redox-responsive and showed remarkably increased and co-ordinated expression in oxidatively-stressed parasites and in parasites growing in antioxidant blunted G6PD-deficient RBCs. Lastly, as important anti-malarials either increase oxidant stress or impair antioxidant defense, results may encourage the inclusion of anti-HSP molecules in anti-malarial combined drugs.  相似文献   

3.
Antioxidant enzymes together with trace elements in 26 patients with chronic renal failure treated with hemodialysis and 25 healthy subjects were investigated. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSHPx) in plasma and erythrocytes were examined immediately before and after hemodialysis. The results are summarized as follows:
  1. A significant decrease in plasma SOD, CAT, and GSHPx and erythrocyte GSHPx were found in patients before hemodialysis.
  2. Erythrocyte CAT and GSHPx were significantly lower in the patients after hemodialysis than in the controls.
  3. Plasma GSHPx was significantly higher after a single hemodialysis than before hemodialysis.
  4. A good correlation between erythrocyte SOD and copper (Cu) in patients before hemodialysis was found.
  5. A good correlation of GSHPx in erythrocytes and plasma was found before hemodialysis, whereas an even better correlation was found after hemodialysis.
  6. Abnormalities of trace elements were found in hamodialyzed patients.
  7. There is indirect evidence for increased oxidizing stress in uremic patients with hemodialysis. Dialysis treatment may improve some abnormalities (e.g., Hb, P), but may also induce some deleterious effects of free radicals or lipid peroxidation.
  相似文献   

4.

Key message

NH 4 + acts as a mild oxidative stressor, which triggers antioxidant cellular machinery and provide resistance to salinity.

Abstract

NH4 + nutrition in Carrizo citrange (Citrus sinensis L. Osbeck × Poncirus trifoliata L) plants acts as an inducer of resistance against salinity conditions. NH4 + treatment triggers mild chronic stress that primes plant defence responses by stress imprinting and confers protection against subsequent salt stress. In this work, we studied the influence of NH4 + nutrition on antioxidant enzymatic activities and metabolites involved in detoxification of reactive oxygen species (ROS) to clarify their involvement in NH4 +-mediated salt resistance. Our results showed that NH4 + nutrition induces in citrus plants high levels of H2O2, strongly inhibits superoxide dismutase (SOD) and glutathione reductase (GR) activities, and leads to higher content of oxidised glutathione (GSSG) than in control plants in the absence of salt, thus providing evidence to confirm mild stress induced by NH4 + nutrition. However, upon salinity, plants grown with NH4 + (N-NH4 + plants) showed a reduction of H2O2 levels in parallel to an increase of catalase (CAT), SOD, and GR activities compared with the control plants. Moreover, N-NH4 + plants were able to keep high levels of reduced glutathione (GSH) upon salinity and were able to induce glutathione-S-transferase (GST) and phospholipid hydroperoxide glutathione peroxidise (PHGPx) mRNA accumulation. Based on this evidence, we confirm that sublethal concentrations of NH4 + might act as a mild oxidative stressor, which triggers antioxidant cellular machinery that can provide resistance to subsequent salt stress.  相似文献   

5.
6.

Aims

A causal relationship between salinity and oxidative stress tolerance and a suitability of using root antioxidant activity as a biochemical marker for salinity tolerance in barley was investigated.

Methods

Net ion fluxes were measured from the mature zone of excised roots of two barley varieties contrasting in their salinity tolerance using non-invasive MIFE technique in response to acute and prolonged salinity treatment. These changes were correlated with activity of major antioxidant enzymes; ascorbate peroxidase, catalase, and superoxide dismutase.

Results

It was found that genotypic difference in salinity tolerance was largely independent of root integrity, and observed not only for short-term but also long-term NaCl exposures. Higher K+ retention ability (and, hence, salinity tolerance) positively correlated with oxidative stress tolerance. At the same time, antioxidant activities were constitutively higher in a sensitive but not tolerant variety, and no correlation was found between SOD activity and salinity tolerance index during large-scale screening.

Conclusion

Although salinity tolerance in barley correlates with its oxidative stress tolerance, higher antioxidant activity at one particular time does not correlate with salinity tolerance and, as such, cannot be used as a biochemical marker in barley screening programs.  相似文献   

7.

Background

Cyanobacteria are recognized as the primordial organisms to grace the earth with molecular oxygen ~3.5 billion years ago as a result of their oxygenic photosynthesis. This laid a selection pressure for the evolution of antioxidative defense mechanisms to alleviate the toxic effect of active oxygen species (AOS) in cyanobacteria. Superoxide dismutases (SODs) are metalloenzymes that are the first arsenal in defense mechanism against oxidative stress followed by an array of antioxidative system. Unlike other living organisms, cyanobacteria possess multiple isoforms of SOD. Hence, an attempt was made to demonstrate the oxidative stress tolerance ability of marine cyanobacterium, Leptolyngbya valderiana BDU 20041 and to PCR amplify and sequence the SOD gene, the central enzyme for alleviating stress.

Result

L. valderiana BDU 20041, a filamentous, non-heterocystous marine cyanobacterium showed tolerance to the tested dye (C.I. Acid Black 1) which is evident by increased in biomass (i.e.) chlorophyll a. The other noticeable change was the total ROS production by culture dosed with dye compared to the control cultures. This prolonged incubation showed sustenance, implying that cyanobacteria maintain their antioxidant levels. The third significant feature was a two-fold increase in SOD activity of dye treated L. valderiana BDU20041 suggesting the role of SOD in alleviating oxidative stress via Asada-Halliwell pathway. Hence, the organism was PCR amplified for SOD gene resulting in an amplicon of 550 bp. The sequence analysis illustrated the presence of first three residues involved in motif; active site residues at H4, 58 and D141 along with highly conserved Mn specific residues. The isolated gene shared 63.8% homology with MnSOD of bacteria confirmed it as Mn isoform. This is the hitherto report on SOD gene from marine cyanobacterium, L. valderiana BDU20041 of Indian subcontinent.

Conclusion

Generation of Reactive Oxygen Species (ROS) coupled with induction of SOD by marine cyanobacterium, L. valderiana BDU20041 was responsible for alleviating stress caused by an azo dye, C. I. Acid Black 1. The partial SOD gene has been sequenced and based on the active site, motif and metal specific residues; it has been identified as Mn metalloform.  相似文献   

8.

Background and aims

The effects of salt stress on the salt marsh halophyte Spartina alterniflora have been well documented. However, plant responses to combined salinity and ammonium toxicity and the underlying mechanisms are relatively unknown. The aim of the present investigation was to study the effects of both salinity (0, 200 and 500 mM NaCl) and nitrogen form (NO3 ?, NH4 + or NH4NO3) on S. alterniflora.

Methods

Plants were cultivated in sandy soil under greenhouse conditions for 3 months. At harvest, growth parameters were measured and leaf samples were analysed for oxidative stress parameters (malondialdehyde, MDA; electrolyte leakage, EL; and hydrogen peroxide, H2O2 concentration) and the activity of antioxidant enzymes (glutathione reductase, GR; superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX and Guaiacol peroxidase, GPX).

Results

In the absence of NaCl, plant growth rate was the highest in the medium containing both nitrogen forms, and the lowest in the medium containing only nitrate. Irrespective of the nitrogen form, plant growth was generally higher at 200 mM NaCl than without salinity. Ammonium-fed plants showed better growth than nitrate-fed plants under high salinity. In the absence of salinity, ammonium-fed plants showed higher SOD, APX, GR, CAT, and GPX activities than nitrate-fed ones. The antioxidant enzymes exhibited higher activity in saline-treated plants. The considerable advantage of NH4 + nutrition to S. alterniflora under saline conditions was associated with high antioxidant enzyme activities, together with low MDA content, EL, and H2O2 concentration.

Conclusion

These data clearly demonstrate that NH4 + is more favourable for the growth of S. alterniflora under high salinity than NO3 ?. It is suggested that NH4 + nutrition improves the plant’s capacity to limit oxidative damage by stimulating the activities of the major antioxidant enzymes.  相似文献   

9.
The responses of the antioxidant defense system in plant species to drought stress are still relatively unknown. In order to further understand how the system responds to drought stress, the leaves of Fargesia denudata seedlings were investigated. Antioxidant enzyme activities, antioxidant contents, hydrogen peroxide (H2O2), superoxide anion (O 2 ·? ) and MDA contents in the seedling leaves were measured under well-watered (WW), moderate drought-stressed (MD), and severe drought-stressed (SD) treatments. Although drought stress significantly increased H2O2 and O 2 ·? levels in F. denudata leaves, only weak lipid peroxidation was observed. This is attributed to the higher superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR) activities in F. denudata leaves during the entire drought period. Reduced and oxidized ascorbate (AsA and DHA) contents were almost not affected by drought except that DHA under SD showed an obvious increase on day 30. Furthermore, reduced glutathione (GSH) content under drought stress significantly decreased, while oxidized glutathione (GSSG) markedly increased under SD on days 30 and 45 as well as under MD on day 30; as a result, the ratio GSH/GSSG declined considerably. These results indicated that GSH was involved in scavenging H2O2 and O 2 ·? under drought stress and it was more sensitive to drought stress in scavenging H2O2 and O 2 ·? than AsA. As a result, a highly efficient antioxidant defense system in drought-stressed F. denudate leaves operated mainly through the synergistic functioning of SOD, CAT, APX, MDHAR, DHAR, GR, and GSH against oxidative damage.  相似文献   

10.

Background and aims

This study aimed to investigate the roles of silicon (Si) in ameliorating manganese (Mn) toxicity in two rice (Oryza sativa L.) cultivars: i.e. cv. Xinxiangyou 640 (XXY), a Mn-sensitive cultivar and cv. Zhuliangyou 99 (ZLY), a Mn-tolerant cultivar.

Methods

Plants were cultured in nutrient solution containing normal Mn (6.7 μM) or high Mn (2.0 mM), both with or without Si supply at 1.5 mM Si.

Results

Plant growth was severely inhibited by high Mn in cv. XXY, but was enhanced by Si supply. In cv. XXY, Si-enhanced tolerance resulted from a restriction of Mn transport, whereas in cv. ZLY Mn uptake was depressed. In cv. XXY, high Mn significantly increased superoxide dismutase (SOD), catalase and ascorbate peroxidase activities but decreased non-protein thiols and glutathione concentrations, leading to accumulation of H2O2 and malondialdehyde. The addition of Si significantly counteracted high Mn-elevated malondialdehyde and H2O2 concentrations and enhanced plant growth. In cv. ZLY, high Mn considerably raised SOD activities and glutathione concentrations, thus leading to relatively low oxidative damage.

Conclusions

Si-enhanced Mn tolerance was attributed mainly to restricted Mn transport in cv. XXY but to depressed Mn uptake in cv. ZLY. Silicon mainly influenced non-enzymatic antioxidants in these two rice cultivars under high Mn stress.  相似文献   

11.

Objective

To investigate the effects of oxidative stress injury in dextran sulfate sodium (DSS)-induced colitis in mice treated with mesenchymal stem cells (MSC).

Results

Mice exposed to oral administration of 2% DSS over 7 days presented a high disease activity index and an intense colonic inflammation. Systemic infusion of MSC protected from severe colitis, reducing weight loss and diarrhea while lowering the infiltration of inflammatory cells. Moreover, toxic colitis injury increased oxidative stress. Administration of DSS decreased reduced glutathione (GSH) and superoxide dismutase (SOD) activity, and increased thiobarbituric acid-reactive substances levels in the colon. No alteration was found in catalase (CAT) and glutathione peroxidase (GPx) activity. Otherwise, MSC transplantation was able to prevent the decrease of GSH levels and SOD activity suggestive of an antioxidant property of MSC.

Conclusion

The oxidative stress is a pathomechanism underlying the pathophysiology of colitis and MSC play an important role in preventing the impairment of antioxidants defenses in inflamed colon.
  相似文献   

12.
13.

Background

Oxidative stress is related to several diseases, including chronic renal insufficiency. The disequilibrium in the oxidant-antioxidant balance is the result of several metabolic changes. The majority of studies to-date have evaluated the grade of oxidative stress with a single biomarker, or a very limited number of them.

Findings

The present study used several important biomarkers to establish a score relating to oxidative stress status (glutathione S-transferase, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, reduced and oxidized glutathione, thiobarbituric acid reactive substances and hemolysis test). The score of oxidative stress (SOS) was then applied to a group of patients with renal insufficiency not on hemodialysis, and compared to healthy control individuals.The score for patients with chronic renal insufficiency was significantly different from that of the healthy control group (0.62 ± 1.41 vs. -0.05 ± 0.94; p < 0.001). The comparison between patients with chronic renal insufficiency and control individuals showed significant differences with respect to changes in the enzymatic antioxidant systems (glutathione S-transferase, glutathione reductase), non-enzymatic antioxidant system (oxidized glutathione) and oxidizability (hemolysis test) indicating significant oxidative stress associated with chronic renal insufficiency.

Conclusions

Patients with chronic renal insufficiency not on hemodialysis are susceptible to oxidative stress. The mechanisms that underlie this status are the consequence of changes in glutathione and related enzymes. The SOS scoring system is a useful biochemical parameter to evaluate the influence of oxidative stress on the clinical status of these patients.
  相似文献   

14.
15.
16.
In plants of wheat (Triticum aestivum L.) grown in the media with nitrate (NO 3 ? plants), ammonium (NH 4 + plants), and without nitrogen (N-deficient plants), the response to oxidative stress induced by the addition of 300 mM NaCl to the nutrient solution was investigated. Three-day-long salinization induced chlorophyll degradation and accumulation of malondialdehyde (MDA) in the leaves. These signs of oxidative stress were clearly expressed in NO 3 ? and N-deficient plants and weakly manifested in NH 4 + plants. In none of the treatments, salinization induced the accumulation of MDA in the roots. Depending on the conditions of N nutrition, salt stress was accompanied by diverse changes in the activity of antioxidant enzymes in the leaves and roots. Resistance of leaves of NH 4 + plants to oxidative stress correlated with a considerable increase in the activities of ascorbate peroxidase and glutathione reductase. Thus, wheat plants grown on the NH 4 + -containing medium were more resistant to the development of oxidative stress in the leaves than those supplied with nitrate.  相似文献   

17.

Background

Oxidative stress is a single mechanism relating all major pathways responsible for diabetic damage and plays an important role in diabetes development, progression and related vascular complications. To investigate the impact of oxidative stress related gene polymorphisms on development of diabetic nephropathy (DN), we tested 7 polymorphic variants that could hypothetically affect the ability of the antioxidant defense system and thus accelerate oxidative stress.

Methodology

197 Slovenian (Caucasian) type 2 diabetic (T2D) patients, age 34?C83, classified into two groups according to the presence of DN, were tested for SOD2 Val16Ala (rs4880), p22 phox C242T (rs4673), CAT C-262T (rs1001179), MPO T-764C (rs2243828), GSTP1 Ile105Val (rs1695), GSTT1 and GSTM1 deletion polymorphisms using PCR, RFLP and qPCR. Oxidative stress was assessed through serum 8-hydroxy-2-deoxyguanosine (8-OHdG) level. Results were analyzed using ANOVA, Chi-square test and multivariate logistic regression.

Results and Conclusions

Despite the commonly recognized link between oxidative stress and diabetes and its complications we found no association between the selected polymorphisms and DN. However, we confirmed an association between oxidative stress level and MPO T-764C genotype, which was tested in relation to DN for the first time.  相似文献   

18.

Background and Aims

Most lichens form associations with Trebouxia phycobionts and some of them simultaneously include genetically different algal lineages. In other symbiotic systems involving algae (e.g. reef corals), the relative abundances of different endosymbiotic algal clades may change over time. This process seems to provide a mechanism allowing the organism to respond to environmental stress. A similar mechanism may operate in lichens with more than one algal lineage, likewise protecting them against environmental stresses. Here, the physiological responses to oxidative stress of two distinct Trebouxia phycobionts (provisionally named TR1 and TR9) that coexist within the lichen Ramalina farinacea were analysed.

Methods

Isolated phycobionts were exposed to oxidative stress through the reactive oxygen species propagator cumene hydroperoxide (CuHP). Photosynthetic pigments and proteins, photosynthesis (through modulated chlorophyll fluorescence), the antioxidant enzymes superoxide dismutase (SOD) and glutathione reductase (GR), and the stress-related protein HSP70 were analysed.

Key Results

Photosynthetic performance was severely impaired by CuHP in phycobionts, as indicated by decreases in the maximal PSII photochemical efficiency (Fv/Fm), the quantum efficiency of PSII (ΦPSII) and the non-photochemical dissipation of energy (NPQ). However, the CuHP-dependent decay in photosynthesis was significantly more severe in TR1, which also showed a lower NPQ and a reduced ability to preserve chlorophyll a, carotenoids and D1 protein. Additionally, differences were observed in the capacities of the two phycobionts to modulate antioxidant activities and HPS70 levels when exposed to oxidative stress. In TR1, CuHP significantly diminished HSP70 and GR but did not change SOD activities. In contrast, in TR9 the levels of both antioxidant enzymes and those of HSP70 increased in response to CuHP.

Conclusions

The better physiological performance of TR9 under oxidative conditions may reflect its greater capacity to undertake key metabolic adjustments, including increased non-photochemical quenching, higher antioxidant protection and the induction of repair mechanisms.  相似文献   

19.
Responses of growth and antioxidant system to root-zone hypoxia stress were comparatively studied in two Malus species (M. hupenensis and M. toringoides) differing in hypoxia tolerance. 50-day-old seedlings were hydroponically grown for 20 days in normoxic and hypoxic nutrient solutions. Hypoxia stress inhibited the growth of both species. Compared with M. hupenensis, M. toringoides was more responsive to hypoxia stress, resulting in larger decreases in leaf number, root length, plant height, and biomass production. The contents of superoxide radicals $ \left( {{\text{O}}_2 \bar{ \cdot }} \right) $ and hydrogen peroxide (H2O2) significantly increased in roots of both species exposed to hypoxia stress, and resulted in lipid peroxidation, which was indicated by accumulated concentration of malonaldehyde (MDA). In addition, a significant increase in $ {\text{O}}_2 \bar{ \cdot } $ , H2O2 and MDA contents was found in M. toringoides under hypoxia stress. In responses to hypoxia stress, peroxidse (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) activities increased during the early part of the hypoxia stress, but decreased in the late period; the activities of SOD, POD and APX were more increased in M. hupenensis than in M. toringoides. Ascorbic acid (AsA) and glutathione (GSH) accumulation was also higher in M. hupenensis than in M. toringoides in the early period under hypoxia stress. These results suggest that the hypoxia-tolerant M. hupenensis has a larger protective capacity against oxidative damage by maintaining higher induced activities of antioxidant system than the hypoxia-sensitive M. toringoides.  相似文献   

20.

Key message

The antioxidant system was significantly inhibited in the early aging line than the near-isogenic normal aging line during senescence.

Abstract

The antioxidant system plays pivotal roles in removal of reactive oxygen species (ROS) produced during leaf senescence. To explore its roles in leaf senescence of wheat (Triticum aestivum L.), the concentrations of antioxidants, activities, and gene expression of antioxidant enzymes were evaluated in flag leaves of the early aging line (EAL) and the near-isogenic normal aging line (NL) during senescence. The results showed that the total chlorophyll and soluble protein in the EAL declined earlier and faster, while more malondialdehyde and ROS accumulated compared with the NL. The activities of superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase were lower in the EAL than in the NL across multiple measuring dates. Additionally, the EAL had less amounts of reduced ascorbate and glutathione as well as lower reduction state with the progression of senescence. Concomitantly, the gene expression of antioxidant enzymes in the EAL was also significantly repressed relative to those in the NL during natural senescence. Taken together, the earlier onset and faster rate of senescence in the EAL could be a result of an imbalance of ROS production and ROS-scavenging antioxidant system, which provided valuable hints toward understanding leaf senescence of wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号