首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In semiarid ecosystems, the self-organized spatial patterns of plants associated with catastrophic shifts can emerge from a variety of processes. In this study, on moderate slopes where Stipa tenacissima cover was high, the self-organization of some of the typical species of semiarid Mediterranean matorral ( Phlomis purpurea , Sideritis oxteosylla, Helianthemum almeriense , and Brachypodium retusum ) was negatively correlated with Stipa cover. The extent of Stipa cover did not affect desert pioneer species, such as Artemisia herba-alba , Fagonia cretica , and Launaea lanifera . On pronounced slopes, the self-organizing structure of brushwood vegetation did not vary predictably with the amount of Stipa cover. We examined the competition/facilitation processes associated with self-organizing patterns in the dwarf shrub ( Phl. purpurea ) and the half shrub ( H. almeriense ). The developmental stability of H. almeriense was positively correlated with Stipa cover, which was expected because they are associated species in this seral thyme brushwood community. Indeed, facilitation processes were manifested by the developmental stability increases under the Stipa canopy, particularly on high slope areas, where Stipa is less competitive. In Phl. purpurea , negative feedback processes from competition with Stipa were manifested where Stipa cover was high and on low slopes (developmental instability increased). In general, competition with Stipa on low slopes tended to decrease plant self-organization.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 103–113.  相似文献   

2.
放牧强度引起的草原植物群落物种多样性与地上生物量变化是近年来草地生态系统研究的热点问题。以内蒙古锡林郭勒克氏针茅草原为研究对象,探究植物群落结构特征、物种多样性与地上生物量之间相互关系及其对不同放牧强度的响应。结果表明:随着放牧强度的增加植物群落结构逐步向退化方向演替;植物群落高度逐渐降低(P<0.05),密度逐渐增加(P<0.05),盖度总体呈下降趋势(P<0.05);植物群落和原有群落优势种地上生物量总体呈下降趋势(P<0.05),而退化指示物种的地上生物量逐渐增加(P<0.05);轻度、中度放牧条件下群落物种Margalef指数、Pielou指数、Simpson指数均显著高于重度放牧(P<0.05);地上生物量与Shannon-Wiener指数、Margalef指数和Pielou指数呈正相关关系,而与Simpson指数呈负相关关系。综上所述,克氏针茅草原植物群落结构和功能在不同放牧强度下产生不同的响应,适度放牧有利于提高群落物种多样性与生物量。  相似文献   

3.
为明确植物的用水策略及适应性机制,以内蒙古四子王旗短花针茅荒漠草原为研究对象,设置对照(CK)、轻度放牧(LG)、中度放牧(MG)和重度放牧(HG)4个放牧梯度,其载畜率分别为每1 hm^(2)每年0、0.93、1.82和2.71个羊单位的放牧强度,调查建群种短花针茅的高度、盖度、密度、地上生物量以及土壤的理化性状,并且采用稳定碳同位素法和红外光合仪法对短花针茅水分利用效率进行了测定,旨在阐明短花针茅水分利用效率在不同放牧强度下的响应规律及其影响因素。结果显示:(1)放牧对短花针茅盖度、密度以及地上生物量的影响显著;随着载畜率的增大,有利于短花针茅的扩散使其分布面积增加,且在中度放牧条件下尤为明显。(2)随着放牧强度的增加,土壤水分含量较对照显著提高,土壤全氮含量呈先增加后减少的变化趋势,土壤速效钾呈现降低的变化趋势,而对土壤全碳含量和pH无显著影响,说明适度放牧能够提高土壤水分含量、促进土壤氮含量的积累,但放牧会导致土壤速效钾减少。(3)随着放牧强度的增大,短花针茅长期水分利用效率(WUE l)呈现“V”形变化趋势,而瞬时水分利用效率(WUE t)与内在水分利用效率(WUE i)总体呈降低的变化趋势。(4)相关分析显示,放牧强度与短花针茅密度、地上生物量呈显著正相关关系,土壤全氮含量与有机碳、pH、WUE i呈显著正相关关系,WUE t与WUE i呈显著正相关关系;短花针茅内在水分利用效率与土壤有机碳含量密切相关。研究表明,重度放牧导致短花针茅株丛破碎化,增加了种群的扩散面积,是短花针茅长期水分利用效率提高的直接原因;短花针茅瞬时水分利用效率随放牧强度的增加而降低可能是由其内在水分利用效率降低引起的。  相似文献   

4.
水分与氮素作为干旱和半干旱草原生产力的共同限制性因子在退化草原的生态快速修复过程中备受关注。以不同放牧强度背景下的短花针茅荒漠草原为研究对象,开展围封模拟放牧利用实验,同时添加氮素和水分。通过分析历史放牧强度与年份对生产力的影响,以及添加氮素和水分对不同功能群植物生物量的作用,探讨放牧强度对短花针茅草原生产力的内在作用机制,以及如何实现荒漠草原资源合理开发和可持续利用。研究结果显示,降雨量与放牧强度决定着短花针茅草原的植物群落结构。氮素和水分添加可分别提升11%-29%和12%-32%的群落地上生物量,且二者存在显著的交互作用。不同功能群植物的地上生物量对氮素与水分添加的响应存在差异,多年生丛生禾草对氮素和水分添加响应最敏感。氮素与水分添加可显著提高多年生丛生禾草的地上生物量,但与自然降水量相关。氮素添加对地上生物量的影响在正常降雨和稍旱年份作用显著,而水分添加在干旱年份作用显著。在正常降雨年份,以半灌木植物为优势种的轻度放牧背景以添加水分对提升生产力最宜,以多年生丛生禾草和半灌木为共优种的中度放牧背景和以多年生丛生禾草为优势种的重度放牧以同时添加水分和氮素对提升生产力最为宜;在干旱年份不同放牧强度背景下均以同时添加水分和氮素对提升生产力最为宜。我们的结果表明了养分与资源的改善有利于退化短花针茅草原的快速恢复和可持续生产。  相似文献   

5.
The effects of grazing intensity on selected soil characteristics in the feather-grass steppes of the autonomous region of Ningxia (northern China) were investigated by a comparison of non-grazed areas (grazing intensity 0), slightly grazed areas (grazing intensity I), moderately grazed areas (II), intensively grazed areas (III) and over-grazed areas (IV). Even in areas used only minimally for grazing activities (I), a serious increase (doubling) in soil hardness was apparent in the upper soil layer. A continual decrease in organic matter in the surface soil can be correlated directly to soil compaction. The content of organic matter in soil of degree IV amounts to only a third of the organic matter found in non-grazed areas. This decrease can be attributed partly to the poor living conditions for soil organisms in compacted soils, but also to a significant reduction in litter. This is because intensive grazing causes reduced vegetation cover leading to litter being blown away by wind or washed away by heavy rainfall. Thus in level III hardly any plant litter remained to be incorporated into the soil as humus. Likewise root density also suffered its largest decrease in areas with a grazing intensity level III. With regard to the content of nitrogen and phosphorous (total and available) hardly any difference between soils of grazing intensity 0 and I was observed, whereas a noticeable decrease was apparent between levels I and II. Available Potassium was similar for all grazing levels. The pH-value of the soil solution is not significantly affected by grazing. We did not observe differences in the soils of the two main types of steppe vegetation (Stipa grandis and Stipa bungeana steppe) in response to grazing. Only the amount of litter in the S. grandis-steppe in non-grazed or slightly grazed areas is noticeably higher than in the S. bungeana steppe.  相似文献   

6.
黄土高原半干旱区退化草地恢复与利用过程研究   总被引:4,自引:0,他引:4  
草地退化表现为土壤和植被遭到彻底破坏,草地演替过程受到强烈抑制.实验采用长期(30年)封禁措施,定位监测退化草地从次生半裸地演变为近似原生植被(进展演替)的变化过程.结果表明,随着封禁时间的变化,退化草地恢复演替经历了4个阶段,群落盖度、植株密度、物种丰富度和多样性指数、地上生物量和地下生物量在草地群落恢复过程中逐渐增加,其特征变化出现的峰值均在封禁第20年(地下生物量峰值在第15年),其中地上生物量最高达520.5 g/m2;直到封禁的第20~25年,以本氏针茅为建群种的草原群落衰败退化现象明显,而大针茅种群密度剧增;在封禁的第26年以上以大针茅为优势的群落生长较为稳定,从目前群落演替进程看,大针茅有替代本氏针茅的趋势.另外,在草原沟道两侧以斑块状聚集分布有中旱生灌木,群落的演替进入了一个新的阶段.随着封禁时间的延续,退化草地从自然封禁恢复的0~26年,通过侵入-竞争-扩散-定居的几个演替阶段,目前形成以大针茅为建群种相对稳定的"亚顶级".虽然草地生物量有一定下降,但草地质量提高,物种多样性丰富,促进草地的进展演替.草地植物群落主要由禾本科、豆科和菊科组成;多年生植物、C3和旱生物种可以作为草地演替过程和植被恢复的指示物种.长期封育对草地物种更新和生态系统稳定性有负面影响,因此,合理的封育时间是草地生态恢复中非常重要的一个因素.本研究提出,在黄土区退化草地封育10~15年后可以开始进行合理的利用,例如通过两年一次刈割和轻度放牧(2只羊/hm2).本研究可为干旱区、半干旱区相似的退化草地恢复提供理论依据.  相似文献   

7.
以内蒙古锡林河流域沿水分梯度分布的灰脉苔草(Carex appendiculata)、贝加尔针茅(Stipa baicalensis)、羊草(Leymus chinensis)、大针茅(Stipa grandis)、小叶锦鸡儿(Caragana microphylla)和冷蒿(Artemisia frigida) 6个草地群落为对象, 研究了围封禁牧与放牧样地中144个共有植物种的高度、丛幅面积、茎、叶和株(丛)生物量、茎叶比等性状。结果表明: 1)在个体水平上, 放牧样地中植物的生殖枝高度、营养枝高度、丛幅面积、单株(丛)生物量、茎、叶生物量和茎叶比均显著低于围封禁牧样地, 植物在放牧干扰下表现出明显的小型化现象; 2)在群落水平上, 放牧亦显著降低了群落总生物量和茎、叶生物量; 3)过度放牧显著改变了物种的资源分配策略, 使生物量向叶的分配比例增加, 向茎的分配比例减少。资源优先向同化器官分配可能是植物对长期放牧干扰的一种重要适应对策; 4)轻度放牧对物种的资源分配没有显著影响, 单株(丛)生物量和群落茎、叶及总生物量均表现出增加趋势, 这与过度放牧的影响正好相反。过度放牧引起的植物个体小型化改变了生态系统中物种的资源分配策略, 进而对生态系统功能产生重要的影响。  相似文献   

8.
以呼伦贝尔克氏针茅草原不同放牧强度下的演替群落为对象,开展群落及其群落建群种的地下生物量和根系形态特征研究.结果表明:从轻度放牧到重度放牧,群落种类组成和根系功能群类型趋于简单化;群落地下生物量的空间分布形态呈“T”型;不同放牧强度下草原群落的建群种出现了明显替代现象,轻度放牧样地群落建群种为密丛型根系的克氏针茅,中度放牧为疏丛型根系的糙隐子草(Cleistogenes squarrosa,重度放牧为鳞茎型根系的碱韭(Allium polyrhizum);随着放牧强度的增大,群落建群种根冠比逐渐增加,分别为0.47、1.0、4.1,并且群落建群种根系数量、根系体积、根系生物量、比根长及根长密度等各指标均发生了明显变化.另外,3种放牧强度样地群落建群种根冠比、根长密度均与土壤速效氮含量呈现显著正相关(P<0.05).  相似文献   

9.
Weber  Gerhard E.  Moloney  Kirk  Jeltsch  Florian 《Plant Ecology》2000,150(1-2):77-96
Increasing cover by woody vegetation, prevalent in semiarid savanna rangelands throughout the world, is a degrading process attributed to the grazing impact as a major causal factor. We studied grazing effects on savanna vegetation dynamics under alternative stocking strategies with a spatially explicit grid-based simulation model grounded in Kalahari (southern Africa) ecology. Plant life histories were modeled for the three major life forms: perennial grasses, shrubs, annuals. We conducted simulation experiments over a range of livestock utilization intensities for three alternative scenarios of small scale grazing heterogeneity, and two alternative strategies: fixed stocking versus adaptive stocking tracking herbage production. Additionally, the impact of the duration of the management planning horizon was studied, by comparing community response and mean stocking rates after 20 and 50 years. Results confirmed a threshold behavior of shrub cover increase: at low, subcritical utilization intensity little change occurred; when utilization intensity exceeded a threshold, shrub cover increased drastically. For both stocking strategies, thresholds were highly sensitive to grazing heterogeneity. At a given critical utilization intensity, the long term effect of grazing depended on the level of grazing heterogeneity: whereas under low heterogeneity, shrub cover remained unchanged, a large increase occurred under highly heterogeneous grazing. Hence, information on spatial grazing heterogeneity is crucial for correct assessment of the impact of livestock grazing on vegetation dynamics, and thus for the assessment of management strategies. Except for the least heterogeneous grazing scenario, adaptive stocking allowed a more intensive utilization of the range without inflating the risk of shrub cover increase. A destabilizing feedback between rainfall and herbage utilization was identified as the major cause for the worse performance of fixed compared to adaptive stocking, which lacks this feedback. Given the usually high grazing heterogeneity in semiarid rangelands, adaptive stocking provides a management option for increasing herbage utilization and thus returns of livestock produce without increasing degradation risks.  相似文献   

10.
The interspecific plant interactions along grazing and aridity stress gradients represent a major research issue in plant ecology. However, the combined effects of these two factors on plant–plant interactions have been poorly studied in the northeast of Iran. To fill this knowledge gap, 144 plots were established in 12 study sites with different grazing intensities (high vs. low) and climatic characteristics (arid vs. semiarid) in northeastern Iran. A dominant shrub, Artemisia kopetdaghensis, was selected as the model species. Further, we studied changes in plant life strategies along the combined grazing and aridity stress gradients. In this study, we used relative interaction indices calculated for species richness, Shannon diversity, and species cover to determine plant–plant interactions using linear mixed‐effect models (LMM). The indicator species analysis was used to identify the indicator species for the undercanopy of shrub and for the adjacent open areas. The combined effects of grazing and aridity affected the plant–plant interactions and plant life strategies (CSR) of indicator species. A. kopetdaghensis showed the highest facilitation effect under high stress conditions (high grazing, high aridity), which turned into competition under the low stress conditions (low grazing, low aridity). In the arid region, the canopy of the shrub protected ruderals, annual forbs, and grasses in both high and low grazing intensities. In the semiarid region and high grazing intensity (low aridity/high grazing), the shrubs protected mostly perennial forbs with C‐strategy. Our findings highlight the importance of context‐dependent shrub management to restore the vegetation damaged by the intensive grazing.  相似文献   

11.
Patch‐size distribution and plant cover are strongly associated to arid ecosystem functioning and may be a warning signal for the onset of desertification under changes in disturbance regimes. However, the interaction between regional productivity level and human‐induced disturbance regime as drivers for vegetation structure and dynamics remain poorly studied. We studied grazing disturbance effects on plant cover and patchiness in three plant communities located along a regional productivity gradient in Patagonia (Argentina): a semi‐desert (low‐productivity community), a shrub‐grass steppe (intermediate‐productivity community) and a grass steppe (high‐productivity community). We sampled paddocks with different sheep grazing pressure (continuous disturbance gradients) in all three communities. In each paddock, the presence or absence of perennial vegetation was recorded every 10 cm along a 50 m transect. Grazing effects on vegetation structure depended on the community and its association to the regional productivity. Grazing decreased total plant cover while increasing both the frequency of small patches and the inter‐patch distance in all communities. However, the size of these effects was the greatest in the high‐productivity community. Dominant species responses to grazing explained vegetation patch‐ and inter‐patch‐size distribution patterns. As productivity decreases, dominant species showed a higher degree of grazing resistance, probably because traits of species adapted to high aridity allow them to resist herbivore disturbance. In conclusion, our findings suggest that regional productivity mediates grazing disturbance impacts on vegetation mosaic. The changes within the same range of grazing pressure have higher effects on communities found in environments with higher productivity, markedly promoting their desertification. Understanding the complex interactions between environmental aridity and human‐induced disturbances is a key aspect for maintaining patchiness structure and dynamics, which has important implications for drylands management.  相似文献   

12.
Question: We studied the interactive effects of grazing and dwarf shrub cover on the structure of a highly diverse annual plant community. Location: Mediterranean, semi‐arid shrubland in the Northern Negev desert, Israel. Methods: Variation in the biomass and plant density of annual species in the shrub and open patches was monitored during four years, inside and outside exclosures protected from sheep grazing, in two contrasting topographic sites: north and south‐facing slopes that differed in their dominant dwarf shrubs species: Sarcopoterium spinosus and Corydothymus capitatus, respectively. Results: Above‐ground biomass, density and richness of annual species were lower under the canopy of both shrub species compared to the adjacent open patches in the absence of grazing. Grazing reduced the biomass of annuals in open patches of both topographic sites, but not in the shrub patches. On the north‐facing slope, grazing also reduced plant density and richness in the open patches, but increased plant density in the shrub patches. At the species level, various response patterns to the combined effects of grazing and patch type were exhibited by different annuals. Protection against the direct impacts of grazing by shrub cover as well as species‐specific interactions between shrubs and annuals were observed. A conceptual mechanistic model explaining these interactions is proposed. Conclusion: In semi‐arid Mediterranean shrublands grazing and dwarf shrub cover interact in shaping the structure of the annual plant community through (1) direct impacts of grazing restricted to the open patches, (2) species‐specific facilitation/ interference occurring in the shrub patches and (3) subsequent further processes occurring among the interconnected shrub and open patches mediated through variation in seed flows between patches.  相似文献   

13.
Aneurolepidium chinense and Stipa grandis steppes are the two main community-types in the temperate,typical steppe zone of Eastern Mongolian plateau. The changes of their species diversity under grazing influence were studied on two representative grazing gradients, situated in the Xilin River Basin, Inner Mongolia. The results showed: The species richness of the two communities is reduced with the increase of grazing intensity,while their in dices of evenness and diversity on moderately grazed sites were higher than those on both ungrazed and heavily grazed sites. The diversity changes of the steppe community on grazing gradient depended mainly on the competitive exclusion of the species and the different effects of grazing on different species. These two functions could be integratively reflected by the synusia structure in communities. So the diversity of the synusia structure in a community was a measure of the degrees of differentiation of the ecological niches in it,and could be effectively used to interprete the species diversity changes. A moderate grazing intensity prevented the competitive exclusion of the dominant synusia,and at the same time,had no restrictions to the development of other synusia, which led to a diversified synusia structure with a high species diversity. Based on the species-area curve analysis, the measurement of large nested quadrats on homogeneous habitat was suggested as a suitable method for inventory and monitoring species diversity in the steppe area.  相似文献   

14.
Grazing is one of the prevalent human activities that even today are taking place inside protected areas with direct or indirect effects on ecosystems. In this study we analyzed the effects of grazing on plant species diversity, plant functional group (PFG) diversity and community composition of shrublands. We analyzed plant diversity data from 582 sampling plots located in 66 protected areas of the Greek Natura 2000 network, containing in total 1102 plant species and subspecies. We also classified a priori all plant species in seven PFGs: annual forbs, annual grasses/sedges, legumes, perennial forbs, perennial grasses/sedges, small shrubs and tall shrubs. For each site, grazing intensity was estimated in four classes (no grazing, low, medium and high grazing intensity). We found that, at the spatial and temporal scale of this study, as grazing intensity increased, so did total species richness. However, each PFG displayed a different response to grazing. Short-lived species (annual grasses or forbs and legumes) benefited from grazing and their species richness and proportion in the community increased with grazing. Perennial grasses and forbs species richness increased with grazing intensity, but their dominance decreased, since their proportion in the community declined. Short shrub species richness remained unaffected by grazing, while tall shrub diversity decreased. Finally, in sites without grazing the spatial pattern of species richness of the different PFGs was not congruent with each other, while in grazed sites they were significantly positively correlated (with the exception of tall shrubs). This finding may imply that grazing is a selective pressure organizing the community structure, and imposing a certain contribution of each PFG. So, in Mediterranean shrublands in protected areas with a long historical record of grazing, it seems that grazing promotes species diversity and its continuation on a portion of the landscape may be a necessary part of an effective management plan.  相似文献   

15.
本文将定位研究与路线考察相结合,将放牧影响下草原的动态演替及其在牧压梯度上的空间变化相对比,研究了内蒙古主要草原草场的放牧退化模式,并在此基础上初步探讨了判别草场退化的数量指标和退化监测专家系统。1)植物种与牧压关系的分析,区别出放牧的定性和定量指示植物及宜中牧植物,并划分植物为不同的放牧生态种组。2)退化草原恢复过程的研究表明,根茎禾草的恢复快于丛生禾草;群落恢复过程是单稳态的,且恢复演替动态与其牧压梯度上的空间变化相对应。3)内蒙古高原主要草原草场在持续放牧影响下均趋同于冷蒿(Artemisia frigida)草原。冷蒿是最可靠的正定量放牧指示植物,但同时又是优良牧草和草原退化的阻击者。4)讨论了草原草场退化的概念,论述了草原逆向演替与草场退化的区别和联系,提出了区分草原的逆向演替为草场熟化和退化两个过程,并依草场群落与牧压的关系建立了判定草场是否退化及退化程度的数量指标。5)初步设计了草原草场退化监测—决策专家系统,包括监测、判别和决策三个步骤。  相似文献   

16.
放牧和异常降水对荒漠草原生态系统产生了显著的影响,群落物种组成及多样性因降水和载畜率的改变而变化。然而不同载畜率下荒漠草原植物群落物种组成及多样性对异常降水的响应尚不明晰。本研究以内蒙古短花针茅(Stipa breviflora)荒漠草原为研究对象,调查并分析不同载畜率(绵羊,CK:不放牧、LG:0.93、MG:1.82和HG:2.71羊单位hm-2半年-1)放牧区植物群落物种组成及其数量特征。结果表明:降水增加对群落数量特征和物种多样性促进作用显著,但对群落物种优势度指数有显著抑制作用;降水增加使得不同功能属性物种数目增多,引起建群种物种综合优势度降低,从而改变群落物种组成及多样性;不同功能属性物种对载畜率的响应存在差异,群落物种组成及多样性在响应异常降水变化时,降水与载畜率之间协同变化和相互制约,但直根系C3植物和群落总密度的变化主要受载畜率影响。异常降水可影响长期过度放牧引起的生态系统过程,对草地生态系统恢复有积极作用。  相似文献   

17.
陇东黄土高原丘陵沟壑区天然草地植物多样性研究   总被引:1,自引:0,他引:1  
以陇东黄土高原丘陵沟壑区天然草地30个植被样点的样方资料为依据,以相对生物量为指标,对该地区群落植物多样性进行了研究。结果表明,该地区天然草地可划分为长芒草草原、次生杂类草草原和杂类草草甸草原3个植被类型,16个群落按放牧程度分为禁牧草地、轻牧草地和过牧草地3个层次。多样性指数显示草甸草原>长芒草草原>次生杂类草草原,轻牧草地>禁牧草地>过牧草地的趋势。放牧程度可能是影响该区域天然草地植物多样性的关键因素,出现海拔增高和降水增加多样性指数降低的趋势可能是放牧干扰的结果。相关性分析显示物种的Shannon-wiener和Simpson多样性指数与Shannon和Simpson均匀度指数间均呈显著正相关,而与生物量之间呈显著负相关。  相似文献   

18.
在两个具有代表性的牧压梯度上,对羊草草原和大针茅草原的群落结构与牧压的关系借助模糊聚类的方法进行分析,揭示了不同牧压下植物群落的分异和不同群落在重牧压下的趋同,其总模式是:大针茅草原—持续牧压——→冷蒿草原 羊草草原—持续牧压———→冷蒿草原 把“群落趋同”的概念广延到放牧退化演替即次生逆向演替的生态学范畴。  相似文献   

19.
放牧对脆弱的荒漠草原生态系统有着重要影响,且随放牧强度及持续时间不同而变化。鞘翅目昆虫是环境监测与生物多样性变化的指示生物。利用巴氏罐诱法对短花针茅荒漠草原不同放牧强度草地的甲虫群落组成和多样性进行调查,探究放牧对荒漠草原甲虫群落的影响。结果表明:(1)步甲科、金龟科为短花针茅荒漠草原甲虫群落优势类群,埋葬甲科、芫菁科、拟步甲科和花金龟科为常见类群。(2)放牧强度增加不利于维持更多的捕食性甲虫;对照和轻度放牧样地可维持更多的腐食性甲虫。(3)甲虫数量随放牧强度增加而递减;群落多样性以重度放牧草地最大,轻度放牧草地最小;群落优势度为对照、中度、重度显著高于轻度放牧草地。各甲虫类群在不同放牧强度草地出现时间、高峰期均不同。(4)对照、轻度、重度放牧样地的甲虫优势类群群落结构不同于其他生境,但均与中度放牧样地存在相似性。轻度、中度、重度放牧样地的甲虫稀有类群群落结构不同于其他生境,但均与对照样地存在相似性。(5)甲虫群落个体数与植物群落物种丰富度、盖度、植物平均高度、生物量呈显著正相关。Shannon-Wiener多样性指数、Margalef丰富度指数均与植物群落物种丰富度、生物量显著负相关。研究结果为荒漠草原甲虫多样性保护提供参考依据。  相似文献   

20.
青藏高原高寒灌丛植被对长期放牧强度试验的响应特征   总被引:1,自引:1,他引:0  
在青藏高原中国科学院海北高寒草甸生态系统定位研究站对金露梅高寒灌丛草场植被开展了长期不同放牧强度试验,分别在短期(4年)、中期(11年)和长期(18年)放牧阶段研究不同放牧干扰强度对草地植物物种多样性、群落结构、地上生物量和草场质量的影响.研究表明,在不同放牧阶段,随着放牧强度增加植物群落的高度和盖度都降低.在中期放牧干扰阶段,物种多样性数和均匀度指数随着放牧强度增加呈现典型的单峰曲线模式;在长期放牧干扰阶段,随着放牧强度增加,占优势地位的灌木和禾草被典型杂类草替代,其中的重度放牧干扰简化了高寒灌丛植被群落结构,减少了地上现存生物量,特别是可食优良牧草生物量.植被对放牧的响应除了与放牧强度和放牧时间阶段密切相关外,还与该地区水热条件的变化有一定的相关性.针对长期放牧干扰的反应特性可将金露梅灌丛草场中植物划分为增加型、敏感型、忍耐型和无反应型4种类型.除了丰富度指数、多样性指数和均匀度指数外,其它一些特征参数并不支持著名的中度干扰假说.本研究发现,长期重度放牧促进了青藏高原高寒草地退化,适度放牧有利于高寒灌丛草场的生物多样性保护和牧草利用;"取半留半"的放牧原则在青藏高原草场放牧管理实践中值得推荐,它将有利于防止草场退化,提高牧草利用率和维持较高的生物多样性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号