首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When fasted rats were refed for 4 days with a carbohydrate and protein diet, a carbohydrate diet (without protein) or a protein diet (without carbohydrate), the effects of dietary nutrients on the fatty acid synthesis from injected tritiated water, the substrate and effector levels of lipogenic enzymes and the enzyme activities were compared in the livers. In the carbohydrate diet group, although acetyl-CoA carboxylase was much induced and citrate was much increased, the activity of acetyl-CoA carboxylase extracted with phosphatase inhibitor and activated with 0.5 mM citrate was low in comparison to the carbohydrate and protein diet group. The physiological activity of acetyl-CoA carboxylase seems to be low. In the protein diet group, the concentrations of glucose 6-phosphate, acetyl-CoA and malonyl-CoA were markedly higher than in the carbohydrate and protein group, whereas the concentrations of oxaloacetate and citrate were lower. The levels of hepatic cAMP and plasma glucagon were high. The activities of acetyl-CoA carboxylase and also fatty acid synthetase were low in the protein group. By feeding fat, the citrate level was not decreased as much as the lipogenic enzyme inductions. Comparing the substrate and effector levels with the Km and Ka values, the activities of acetyl-CoA carboxylase and fatty acid synthetase could be limited by the levels. The fatty acid synthesis from tritiated water corresponded more closely to the acetyl-CoA carboxylase activity (activated 0.5 mM citrate) than to other lipogenic enzyme activities. On the other hand, neither the activities of glucose-6-phosphate dehydrogenase and malic enzyme (even though markedly lowered by diet) nor the levels of their substrates appeared to limit fatty acid synthesis of any of the dietary groups. Thus, it is suggested that under the dietary nutrient manipulation, acetyl-CoA carboxylase activity would be the first candidate of the rate-limiting factor for fatty acid synthesis with the regulations of the enzyme quantity, the substrate and effector levels and the enzyme modification.  相似文献   

2.
Abstract— C-6 glial cells in culture were utilized to define the role of glucocorticoid in the regulation of palmitic acid synthesis and the important lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase. Particular emphasis was given to fatty acid synthetase which exhibited more than a 50% reduction in specific activity when cells were exposed to hydrocortisone (10 μg/ml) for 1 week. Coordinate changes in acetyl-CoA carboxylase activity and in palmitic acid (and sterol) synthesis from acetate accompanied the alterations in fatty acid synthetase. Immunochemical techniques were utilized to show that the decrease in synthetase activity involved an alteration in enzyme content, not in catalytic efficiency. The changes in content of fatty acid synthetase were caused by alterations in enzyme synthesis. Glucocorticoids may regulate fatty acid synthetase in C-6 glial cells by a mechanism similar to that suggested for adipose tissue. The inhibition of palmitic acid synthesis may be relevant to other effects of glucocorticoids on developing brain.  相似文献   

3.
The levels of hepatic fatty acid synthesizing enzymes, acetyl-CoA carboxylase and fatty acid synthetase, are lowered to about one-tenth of the controls in hypophysectomized animals, whereas the lung enzymes decrease by only 25–30%. Administration of 3,5,3′-l-triiodothyronine to the hypophysectomized animals returns the hepatic and lung enzyme activities to the control values. Optimum levels are achieved at a dose of about 150 μg/100 g body wt and 3–4 days after triiodothyronine administration. The triiodothyronine response can be reduced by 80% with actinomycin-D or cycloheximide but not with hydrocortisone hemisuccinate. Antibody-antigen titrations and measurements of the rate of synthesis of fatty acid synthetase are indicative of increased synthesis of fatty acid synthetase and not of activation of the preexisting inactive species. These measurements provide evidence for the involvement of hormones other than insulin in the control of synthesis of fatty acid synthesizing enzymes.  相似文献   

4.
The activities of hepatic acetyl-CoA carboxylase and fatty acid synthetase undergo two distinct types of development in the perinatal chick. The first increase begins prior to hatching, continues after hatching in the starved chick, and is independent of feeding. The second increase is caused by feeding and is reversed by starvation (A. G. Goodridge (1973) J. Biol. Chem.248, 1932–1938). We have purified these enzymes to homogeneity and raised antibodies to them in rabbits. Using immunochemical techniques we have established that the activity changes in both types of development were a function of changes in the concentrations of enzyme proteins. All activity changes were accompanied by similar changes in the relative rates of synthesis of the two enzymes. Regulation of the activities of acetyl-CoA carboxylase and fatty acid synthetase was further characterized in liver cells from 19-day-old embryos maintained in culture in a chemically defined medium. After 3 days in culture in the absence of hormones, the activities of the enzymes increased significantly with respect to the activities of the freshly prepared cells. Addition of either insulin or triiodothyronine alone caused additional small increases. Insulin plus triiodothyronine caused 8- and 15-fold increases in acetyl-CoA carboxylase and fatty acid synthetase, respectively, relative to cells incubated without hormones. In the presence of insulin alone glucagon had no effect on the activity of either enzyme. In the presence of insulin plus triiodothyronine, glucagon inhibited the increase in enzyme activities by about 75%. The results of quantitative immunoprecipitin tests indicated that activity changes caused by the various hormones were functions of changes in the concentrations of the enzyme proteins. The effects of the hormones on enzyme activities were accompanied by comparable or larger changes in the relative rates of synthesis of the enzymes. Under a wide variety of experimental conditions, both in vivo and in culture, the relative rates of synthesis of acetyl-CoA carboxylase and fatty acid synthetase are regulated coordinately. Under some of these conditions, synthesis of malic enzyme also is regulated coordinately with the syntheses of acetyl-CoA carboxylase and fatty acid synthetase. The common intracellular mechanisms underlying the coordinate control remain to be elucidated.  相似文献   

5.
Hepatocytes were isolated at specified times from livers of diabetic and insulin-treated diabetic rats during the course of a 48-h refeeding of a fat-free diet to previously fasted rats. The rates of synthesis of fatty acid synthetase and acetyl-CoA carboxylase in the isolated cells were determined as a function of time of refeeding by a 2-h incubation with l-[U-14C]leucine. Immunochemical methods were employed to determine the amount of radioactivity in the fatty acid synthetase and acetyl-CoA carboxylase proteins. The amount of radioactivity in the fatty acid synthetase synthesized by the isolated cells was also determined following enzyme purification of the enzyme to homogeneity. Enzyme activities of the fatty acid synthetase and acetyl-CoA carboxylase in the cells were measured by standard procedures. The results show that isolated liver cells obtained from insulintreated diabetic rats retain the capacity to synthesize fatty acid synthetase and acetyl-CoA carboxylase. The rate of synthesis of the fatty acid synthetase in the isolated cells was similar to the rate found in normal refed animals in in vivo experiments [Craig et al. (1972) Arch. Biochem. Biophys. 152, 619–630; Lakshmanan et al. (1972) Proc. Nat. Acad. Sci. USA69, 3516–3519]. In addition the relative rate of synthesis of fatty acid synthetase was stimulated greater than 20-fold in the diabetic animals treated with insulin. Immunochemical assays, when compared with enzyme activities, indicated the presence of an immunologically reactive, but enzymatically inactive, form or “apoenzyme” for both the fatty acid synthetase and acetyl-CoA carboxylase. The synthesis of these immunoreactive and enzymatically inactive species of protein, as well as the synthesis of the “holoenzyme” forms of both enzymes, requires insulin.  相似文献   

6.
The long-term regulation of fatty acid synthetase and acetyl-CoA carboxylase and of fatty acid and sterol synthesis was studied in C-6 glial cells in culture. When theophylline (10(-3) M) was added to the culture medium of these cells, rates of lipid synthesis from acetate and activities of synthetase and carboxylase became distinctly lower than in cells that were untreated. This effect appeared after approximately 12 h, and after 48 h enzymatic activities were reduced approx. 2-fold and rates of lipid synthesis from acetate 3- to 4-fold. The likelihood that the decrease in fatty acid synthesis from acetate was caused by the decrease in activities of fatty acid synthetase and acetyl-CoA carboxylase was established by several observations. These indicated that the locus of the effect probably did not reside at the level of acetate uptake into the cell, alterations in acetate pool sizes or conversion of acetate to acetyl-CoA. Moreover, de novo fatty acid synthesis was found to be the predominant pathway in these glial cells, whether treated with theophylline or not. The mechanism of the effect of theophylline on fatty acid synthetase was shown by immunochemical techniques to involve an alteration in content of enzyme rather than in catalytic efficiency. The change in content of fatty acid synthetase was shown by isotopic-immunochemical experiments to involve a decrease in synthesis of the enzyme. The mechanism whereby theophylline leads to a decrease in lipogenesis and in the synthesis of fatty acid synthetase may not be mediated entirely by inhibition of phosphodiesterase and an increase in cyclic AMP levels, because dibutyryl cyclic AMP (10(-3) M) only partially reproduced the effect.  相似文献   

7.
Administration of estradiol-17 beta to male Xenopus laevis evokes the proliferation of the endoplasmic reticulum and the Golgi apparatus and the synthesis and secretion by the liver of massive amounts of the egg yolk precursor phospholipoglycoprotein, vitellogenin. We have investigated the effects of estrogen on three key regulatory enzymes in lipid biosynthesis, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, the major regulatory enzyme in cholesterol and isoprenoid synthesis, and acetyl-CoA carboxylase and fatty acid synthetase, which regulate fatty acid biosynthesis. HMG-CoA reductase activity and cholesterol synthesis increase in parallel following estrogen administration. Reductase activity in estrogen stimulated Xenopus liver cells peaks at 40-100 times the activity observed in control liver cells. The increased rate of reduction of HMG-CoA to mevalonic acid is not due to activation of pre-existing HMG-CoA reductase by dephosphorylation, as the fold induction is unchanged when reductase from control and estrogen-stimulated animals is fully activated prior to assay. The estrogen-induced increase of fatty acid synthesis is paralleled by a 16- to 20-fold increase of acetyl-CoA carboxylase activity, indicating that estrogen regulates fatty acid synthesis at the level of acetyl-CoA carboxylase. Fatty acid synthetase activity was unchanged during the induction of fatty acid biosynthesis by estrogen. The induction of HMG-CoA reductase and of acetyl-CoA carboxylase by estradiol-17 beta provides a useful model for regulation of these enzymes by steroid hormones.  相似文献   

8.
The major objectives of this study were to define the roles of adrenal glucocorticoids and glucagon in the long-term regulation of fatty acid synthetase and acetyl-CoA carboxylase of mammalian adipose tissue and liver. Particular emphasis was given to elucidation of the mechanisms whereby these hormones produce their regulatory effects on enzymatic activity. To dissociate mental manipulation, nutritional conditions were ridgidly controlled in the experiments described. Administration of glucocorticoids to adult rats led to a marked reductionin activities of fatty acid synthetase and carboxylase in adipose in adipose tissue but no change occurred in liver. Adrenalectomy produced an increase in activities of these lipogenic enzymes in adipose tissure, but, again, no change was noted in liver. The decrease in enzymatic activities in adipose tissue with glucocorticoid administration correlated well with a decrease in fatty acid synthesis, determined in vivo by the 3-H2O method. The mechanisms whereby glucocorticoids led to a decrease in fatty acid synthetase activity were elucidated by the use of immunochemical techniques. Thus, the decrease in fatty acid synthetase activity observed in adipose tissue was shown to reflect a decrease in content of enzyme, and not a change in catalytic efficiency. The mechanism underlying the decrease in enzyme content is a decrease in synthesis of the enzyme. The relation of the effects of glucocorticoids to the effects of certain other hormones involved in regulation of lipogenesis was investigated in hypophysectomized and in diabetic animals. Thus, the observation that the glucocorticoid effect on synthetase and carboxylase occurred in adipose tissue of hypophysectomized rats indicated that alterations in levels of other pituitary-regulated hormones were not necessary for the effect. That glucocorticoids play some role in regulation of synthetase and carboxylase in liver, at lease in the diabetic state, was shown by the observation that the low activities of these enzymes in diabetic animals could be restored to normal by adrenalectomy. An even more pronounced restorative effect was apparent in adipose tissue of adrenalectomized, diabetic animals. Administration of glucagon during the refeeding of starved rats resulted in a marked reduction in the induction of fatty acid synthetase, acetyl-CoA carboxylase and in the rate of incorporation of 3-H from 3-H2O into fatty acids in liver, but no change in these parameters occurred in adipose tissue. Administration of theophylline resulted in intermediate reduction in liver. The mechanisms whereby glucagon led tto a decrease in fatty acid synthetase activity were elucidated by the use of immunochemical techniques. Thus, the changes in fatty acid synthetase activity were shown to reflect reductions in content of enzyme. The mechanism underlying these reductions in content is reduced synthesis of enzyme.  相似文献   

9.
1. The specific activities of fatty acid synthetase, acetyl-CoA carboxylase and pyruvate dehydrogenase were measured in rat adipose-tissue extracts in pregnancy and lactation. Fatty acid synthetase specific activity correlates very closely with the rate of fatty acid synthesis, the enzyme specific activity decreasing after mid-pregnancy in a manner very similar to the rate of fatty acid synthesis. Acetyl-CoA carboxylase specific activity also decreases dramatically after mid-pregnancy. Initial pyruvate dehydrogenase specific activity shows a decrease between 2 days pre partum and 2 days post partum, but total enzyme activity shows no significant change in the same period. 2. Immunotitrations of fatty acid synthetase and pyruvate dehydrogenase activities were carried out; the titrations showed that the change in the fatty acid synthetase activity is due to a change in the enzyme amount; the amount of pyruvate dyhydrogenase does not change. Therefore the decrease in fatty acid biosynthesis in subcutaneous and parametrial adipose tissue in late pregnancy and early lactation is associated with a decrease in the amount of at least one of the enzymes involved in fatty acid biosynthesis. The correlation of these events with known hormonal changes is discussed.  相似文献   

10.
The BHE strain of rat is characterized by early hyperinsulinemia and maturity onset hyperlipemia and hyperglycemia. Since we have previously shown that insulin is required for the coordinate regulation of a number of lipogenic enzymes in rat liver, a comparative study of the hepatic activities of the rate-limiting enzymes of lipid synthesis and the in vivo rates of fatty acid and cholesterol synthesis in the liver and the adipose tissue has been conducted in BHE and Wistar rats. In the liver, BHE rats had 25–28% higher acetyl-CoA carboxylase and fatty acid synthetase activities as measured in vitro but a 100% greater rate of fatty acid synthesis in vivo as compared to Wistar animals. These results strongly suggest that factors other than the amount of acetyl-CoA carboxylase, such as allosteric effectors, must be operating in vivo, thereby facilitating the carboxylase to function at its maximal capacity in BHE rats. Such a regulation of fatty acid biosynthesis by allosteric modifiers of acetyl-CoA carboxylase is already known, although the mechanism of this regulation is not fully understood. BHE rats also exhibited a twofold greater rate of fatty acid synthesis in the adipose tissue compared to the Wistar rats. Thus, increased lipogenic capacity and increased lipogenesis in BHE rats are consistent with early hyperinsulinemia in this strain. Furthermore, BHE rats had 71% more 3-hydroxy-3-methylglutaryl CoA reductase activity with a 97% greater rate of cholesterol synthesis as compared to Wistar rats. In contrast, cholesterol 7α-hydroxylase activity was only 20% greater in BHE rats compared to Wistar rats, suggesting that the BHE rat does not have the capacity to degrade cholesterol to bile acids at a rate commensurate with the increased rate of cholesterol synthesis. This difference in synthesis versus degradation might account for the hypercholesterolemia which occurs in BHE rats, but not in Wistar rats.  相似文献   

11.
1. Mammary-tissue biopsies were obtained from multiparous cows at 30 and 7 days pre partum and 7 and 40 days post partum. Investigations of the effect of lactogenesis on fatty acid and lactose synthesis involved measurements of biosynthetic capacity (tissue-slice incubations in vitro) and activities of relevant enzymes. 2. Fatty acid synthesis from acetate increased over 20-fold from 30 days pre partum to 40 days post partum. Changes in the lipogenic capacity of mammary-tissue slices more closely paralleled increases in the activities of acetyl-CoA carboxylase (EC 6.4.1.2) and acetyl-CoA synthetase (EC 6.2.1.1) than of other enzymes involved in acetate incorporation into fatty acids or in NADPH generation. 3. Lactose biosynthesis by mammary-tissue slices, lactose synthetase activity (EC 2.4.1.22) and alpha-lactalbumin concentration were all negligible at 30 days pre partum but increased 2.5-4-fold between 7 days pre partum and 40 days post partum. Phosphoglucomutase (EC 2.7.5.1), UDP-glucose pyrophosphorylase (EC 2.7.7.9) and UDP-glucose 4-epimerase (EC 5.1.3.2) had substantial activities at 30 days pre partum and increased less dramatically during lactogenesis. 4. Results are consistent with acetyl-CoA carboxylase and perhaps acetyl-CoA synthetase representing the regulatory enzyme(s) in fatty acid synthesis, with lactose synthetase (alpha-lactalbumin) serving a similar function in lactose biosynthesis.  相似文献   

12.
13.
The activities of lipogenic enzymes, such as acetyl-CoA carboxylase, fatty acid synthetase and glucose-6-phosphate dehydrogenase, and glycerolipid synthesis increased significantly in mammary explants of 11-day-pseudopregnant rabbits in response to prolactin, in the presence of near-physiological concentrations of insulin and corticosterone in culture. Increasing the concentration of progesterone in culture resulted in suppression of glycerolipid synthesis and activities of acetyl-CoA carboxylase and fatty acid synthetase, but not the pentose phosphate dehydrogenases. However, at near-physiological concentration of progesterone, only acetyl-CoA carboxylase activity was decreased. Injection of prolactin intraductally into 11-day-pseudopregnant rabbits stimulated glycerolipid synthesis, fatty acid synthesis and enzymes involved in fatty acid synthesis, after 3 days. Intraductal injection of progesterone separately or together with prolactin had no significant effect on basal or stimulated lipogenesis in mammary glands. Intramuscular injection of progesterone at 10 mg/day did not suppress fatty acid synthesis stimulated when prolactin was injected intraductally, but a significant inhibition was observed at a higher dose (80 mg/day).  相似文献   

14.
Hepatic activities of rate limiting enzymes in fatty acid and cholesterol synthesis and cholesterol degradation were determined in lean and obese LA/N-cp rats. The hepatic activities of acetyl-CoA carboxylase and fatty acid synthetase, the key enzymes of fatty acid synthesis and 3-hydroxy-3-methylglutaryl coenzyme A reductase (the rate limiting enzyme in cholesterol synthesis), were increased 2-fold in the obese rats as compared with their lean littermates. In contrast, the activity of cholesterol 7alpha-hydroxylase, the rate limiting enzyme of cholesterol degradation to bile acids, was significantly decreased by 28% in the obese group as compared with the control group. Significantly, compared with the control group, the obese animals exhibited similar magnitudes of differences in the activities of the above enzymes even when they were pair-fed with the control animals. Thus these differences in the obese group are not due to hyperphagia but possibly to hypersecretion of the lipogenic hormone, insulin in this strain. These results indicate that the LA/N-cp obese rat has twice the capacity to synthesize body fat and cholesterol but has a reduced capacity to degrade the cholesterol, leading to increased accumulation of cholesterol and fat.  相似文献   

15.
Induction of lipogenesis during differentiation in a "preadipocyte" cell line.   总被引:30,自引:0,他引:30  
3T3-L1 fibroblasts differentiate in culture into cells having adipocyte character. This transition is accompanied by a 40- to 50-fold rise in the incorporation of [14C]acetate into triglyceride. The increase in lipogenic rate is exactly parallel to a coordinate rise in the activities of the key enzymes of the fatty acid biosynthetic pathway (ATP-citrate lyase, acetyl-CoA carboxylase, and fatty acid synthetase). Immunological studies indicate that the elevated acetyl-CoA carboxylase activity is the product of an increased cellular enzyme level.  相似文献   

16.
Abstract— C6 glial cells in culture were utilized to study the regulation of the important lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase, and the synthesis of fatty acids and sterols. Regulation of these phenomena by lipid was demonstrated by the following observations. First, removal of serum from the culture medium was accompanied over the next five days by 2–3-fold increases in the lipogenic enzymatic activities and in 5–15-fold increases in rates of incorporation of acetate into fatty acids and sterols. Second, cells grown in delipidated serum exhibited approx 2-fold higher levels of activity of the lipogenic enzymes and 5–10-fold higher rates of synthesis of fatty acids and sterols than cells grown in normal calf serum. Third, cells grown in serum-free medium supplemented with concentrations of fatty acid comparable to those present in medium supplemented with serum exhibited activities of fatty acid synthetase comparable to those exhibited by cells grown in the serum-supplemented medium. The mechanism of these effects on fatty acid synthetase was shown by immunochemical techniques to involve alterations in content rather than in catalytic efficiency of the enzyme. The changes in content of the synthetase were caused by alterations in enzyme synthesis. In view of morphological and biochemical data suggesting that C6 cells are related to differentiating cells with properties of both astrocytes and oligodendroglia, the present data may indicate that regulation of palmitic acid synthesis by fatty acid or a product thereof occurs in brain during development.  相似文献   

17.
Subcutaneous administration of l-triiodothyronine (T3) to diabetic rats restored hepatic acetyl-CoA carboxylase and fatty acid synthetase enzymes to normal levels. T3 stimulated the fatty acid-synthesizing enzymes of diabetic animals by two different mechanisms. Between 4 and 12 h after T3 administration, carboxylase and synthetase increased slowly, after which both the enzyme activities increased at faster rate. Carboxylase and synthetase induction could be inhibited by cycloheximide or actinomycin D during the first 12 h. The incorporation of [14C]pantothenate into the fatty acid synthetase during 4–12 h followed the same pattern as the development of the enzyme activity. Moreover, liver supernatants from T3-treated diabetic rats were able to compete with pure fatty acid synthetase for antibody binding sites, the degree of competition increased with increasing period of T3 treatment. The results suggest that enzymatically inactive precursors of synthetase in the diabetic livers are converted to enzymatically active enzyme as a result of T3 treatment. The second part of T3-mediated stimulation (24 to 72 h following T3 treatment) was inhibited by cycloheximide and actinomycin D. Antibody-antigen titration and measurement of rate of protein synthesis suggest that the increased activity of hepatic synthetase is due to enhanced synthesis of the enzyme for that period. These results indicate that T3 might play a significant regulatory role in hepatic fatty acid synthesis.  相似文献   

18.
The activities of glucose-6-phosphate dehydrogenase, malic enzyme, fatty acid synthetase and acetyl-CoA carboxylase (extracted with or without phosphatase inhibitor) in rat liver did not vary significantly during 24 h. The hepatic levels of glucose 6-phosphate and malate increased coordinately 3-6 h after the beginning (1900 h) of food intake and were high until morning, whereas the levels of acetyl-CoA and citrate peaked at 1900 h and then decreased. However, it is remarkable that the in vivo incorporation of 3H from tritiated water into fatty acids in liver increased with the level of malonyl-CoA after food intake. Comparing the substrate and effector levels with the Km and Ka values for the enzymes, the levels of acetyl-CoA, malonyl-CoA and citrate appear to limit the enzyme activities. It is suggested that, after food intake, the physiological activity of acetyl-CoA carboxylase was increased with the substrate increase and/or with the catalytic activation with citrate, and consequently, the fatty acid synthetase activity was also increased, whereas the enzyme activities measured under optimum conditions were not.  相似文献   

19.
When individual enzyme activities of the fatty acid synthetase (FAS) system were assayed in extracts from five different plant tissues, acetyl-CoA:acyl carrier protein (ACP) transacylase and beta-ketoacyl-ACP synthetases I and II had consistently low specific activities in comparison with the other enzymes of the system. However, two of these extracts synthesized significant levels of medium chain fatty acids (rather than C16 and C18 acid) from [14C]malonyl-CoA; these extracts had elevated levels of acetyl-CoA:ACP transacylase. To explore the role of the acetyl transacylase more carefully, this enzyme was purified some 180-fold from spinach leaf extracts. Varying concentrations of the transacylase were then added either to spinach leaf extracts or to a completely reconstituted FAS system consisting of highly purified enzymes. The results suggested that: (a) acetyl-CoA:ACP transacylase was the enzyme catalyzing the rate-limiting step in the plant FAS system; (b) increasing concentration of this enzyme markedly increased the levels of the medium chain fatty acids, whereas increase of the other enzymes of the FAS system led to increased levels of stearic acid synthesis; and (c) beta-ketoacyl-ACP synthetase I was not involved in the rate-limiting step. It is suggested that modulation of the activity of acetyl-CoA:ACP transacylase may have important implications in the type of fatty acid synthesized, as well as the amount of fatty acids formed.  相似文献   

20.
A human breast cell line has been identified which contains prodigious levels of fatty acid synthetase but has a very low capacity for lipogenesis from glucose, lactate or acetate. The fatty acid synthetase from this cell line appears to be structurally and functionally normal, and the low lipogenic capacity of the cells appears to be due to the low activities of other lipogenic enzymes, notably acetyl-CoA carboxylase. Thus, the SKBr3 cell line appears to lack the long-term coordinated control of acetyl-CoA carboxylase and fatty acid synthetase commonly observed in normal lipogenic tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号