首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The specific radioactivities of glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, UDP-glucose and glycogen, derived from [14C]gluocose, were determined in the normal and insulin-deficient (streptozotocin-diabetic and anti-insulin-serum-treated) perfused non-working and working rat heart. 2. The specific radioactivities of all glucose metabolities reached a plateau after about 10 min, except that for glycogen, which increased slightly but steadily over the whole observation period of 30min. 3. The specific radio-activities of fructose 6-phosphate, UDP-glucose and glycogen were slignificantly lower in the streptozotocin-diabetic heart than in the normal heart. 4. Mechanical work in the normal rat heart increased the specific radioactivities of glucose 1-phosphate, UDP-glucose and glycogen, but had little or no effect on those of gluose 6-phosphate and fructose 6-phosphate. 5. In the normal heart insulin strongly increased the specific radioactivities of all gluocse metabolites under all conditions tested. The maximum values achieved in the normal working heart in the presence of insulin were only about 15-20% above those in the normal non-working heart in the presence of insulin for the phosphorylated intermediates and about 40% above for glycogen. 6. In the streptozotocin-diabetic heart, work restored the specific radioactivities of all glucose metabolities to about normal values. 7. In the streptozotocin-diabetic heart insulin strongly increased the specific radioactivities of the direct glycogen precursors glucose 1-phosphate and UDP-glucose; the effect of insulin on glucose 6-phosphate and fructose 6-phosphate was less marked. These results confirm previous findings that the primary metabolic lesion in diabetic heart muscle is a defect of glycogen synthesis. The specific radioactivity of glycogen itself was increased sixfold. 8. Under all conditions tested the specific radioactivity of glucose 1-phosphate was always found to be higher than that of glucose 6-phosphate. This indicated either compartmentation of a small but metabolically very active pool of glucose 6-phosphate, or the existence of a hitherto unknown pathway of metabolism in which glucose 1-phosphate is the primary reaction product. For a number of reasons the authors prefer the first explanation, which could also account for the observation that in the perfused normal working and non-working heart the specific radioactivity of fructose 6-phosphate was always found to be higher than that of glucose 6-phosphate. This difference disappeared or was reversed in the rat hearts rendered insulin-insufficent by either streptozotocin or anti-insulin treatment.  相似文献   

2.
Working rat hearts were perfused with either buffer or with defibrinated, undiluted rat blood dialyzed to remove vasoconstrictor factors. With precautions taken for sterility in the preparation of the perfusate and the apparatus, hearts were obtained which were stable as judged by stroke rate and cardiac output. In these hearts, cardiac output and coronary flow averaged 46.0 and 1.7 ml/g heart per min, respectively. Perfusion with erythrocyte-free buffer depressed cardiac output by 30%, while coronary flow averaged 8.8 ml/g of heart per min. The mean stroke rate of blood-perfused hearts was 300 beats/min but only 240 beats/min during buffer perfusion. In blood-perfused hearts, insulin did not alter stroke rate but significantly lowered coronary flow. The hormone caused a transient increase in cardiac output in hearts perfused with buffer. Insulin did not alter glucose uptake in buffer-perfused hearts but increased lactate release in perfusions with blood. Both serum fatty acids and triacylglycerol fatty acids were significant metabolic fuels in hearts perfused with undiluted blood. The preparation described would appear to be potentially useful for the study of myocardial metabolism in vitro.  相似文献   

3.
The study examined the effect of insulin on glucose metabolism in freshly isolated calcium-tolerant heart myocytes from adult rats. The uptake of 2-deoxyglucose demonstrated an initial lag in response to insulin and the maximal insulin effect was not attained until after 3 min preincubation with the hormone. A dose-response study of 14CO2 production from [14C]glucose revealed that the maximum insulin stimulation of glucose utilization occurred with 5 mU/ml. Both the uptake and the oxidation of glucose proceeded at a linear rate in the absence and presence of insulin. However, insulin exerted a greater effect on the uptake (42-54%) than on the oxidation (17-22%) of exogenous glucose. Incorporation of glucose into glycogen was markedly increased by insulin and resulted in the myocyte glycogen concentration returning to in vivo levels. In the absence of insulin, glucose incorporation plateaued within 10 min of incubation and the glycogen concentration was not altered. Our findings also indicate that at equilibrium, insulin-treated cells exhibited a higher glycogen turnover rate. It thus appears that insulin exerts a differential effect on the different pathways in glucose metabolism in the isolated cardiac cells. This may be related in part to their quiescent state and lower energy demand.  相似文献   

4.
In the absence of glucose, insulin stimulated the incorporation of (14)C-labelled amino acids into protein by perfused rat hearts that had been previously substantially depleted of endogenous glucose, glucose 6-phosphate and glycogen by substrate-free perfusion. This stimulation was also demonstrated in hearts perfused with buffer containing 2-deoxy-d-glucose, an inhibitor of glucose utilization. It is concluded that insulin exerts an effect on protein synthesis independent of its action on glucose metabolism. Streptozotocin-induced diabetes was found to have no effect either on (14)C-labelled amino acid incorporation by the perfused heart or on the polyribosome profile and amino acid-incorporating activity of polyribosomes prepared from the non-perfused hearts of these insulin-deficient rats, which show marked abnormalities in glucose metabolism. Protein synthesis was not diminished in the perfused hearts from rats treated with anti-insulin antiserum. The significance of these findings is discussed in relation to the reported effects of insulin deficiency on protein synthesis in skeletal muscle.  相似文献   

5.
1. The metabolism of [U-(14)C]glucose in perfused resting and contracting diaphragm muscle from normal rats and rats made diabetic with streptozotocin was studied in the presence and absence of insulin. 2. The incorporation of [U-(14)C]-glucose into glycogen and oligosaccharides was stimulated by insulin under all experimental conditions studied. 3. In the normal perfused resting diaphragm muscle the incorporation of radioactivity from [(14)C]glucose into lactate and CO(2) was not affected by insulin. 4. Periodic contractions, induced by electrical stimulation of the perfused diaphragm muscle in the absence of insulin, caused an increased incorporation of (14)C into glycogen and hexose phosphate esters, whereas incorporation of (14)C into lactate was greatly decreased. Production of (14)CO(2) in the contracting muscle was not significantly different from that in resting muscle. Addition of insulin to the perfusion liquid caused a further increase in formation of [(14)C]-glycogen in contracting muscle to values reached in the resting muscle in the presence of insulin. Formation of [(14)C]lactate was also stimulated by insulin, to values close to those found in the resting muscle in the presence of insulin. 5. In the diabetic resting muscle the rate of glucose metabolism was very low in the absence of insulin. Insulin increased formation of [(14)C]glycogen to the value found in normal muscle in the absence of insulin. Production of (14)CO(2) and formation of [(14)C]hexose phosphate remained unchanged. 6. In the diabetic contracting muscle production of (14)CO(2) was increased to values approaching those found in normal contracting muscle. Formation of [(14)C]lactate and [(14)C]glycogen was also increased by contraction, to normal values. Only traces of [(14)C]hexose phosphate were detectable. Addition of insulin to the perfusion medium stimulated formation of [(14)C]glycogen, to values found in normal contracting muscle. Production of [(14)C]hexose phosphate was stimulated by insulin, to approximately the values found in the normal contracting muscle. Production of (14)CO(2) and [(14)C]lactate, however, was not significantly affected by insulin. 7. These results indicate that the defects of glucose metabolism observed in perfused resting diabetic diaphragm muscle can be partially corrected by contraction, and in the presence of insulin the contracting diabetic muscle has a completely normal pattern of glycogen synthesis and lactate production, but CO(2) production remains impaired.  相似文献   

6.
7.
The effect of 8-wk of treadmill training on plasma glucose, insulin, and lipid concentrations, oral glucose tolerance, and glucose uptake in the perfused hindquarter of normal and streptozocin-treated, diabetic Sprague-Dawley rats was studied. Diabetic rats with initial plasma glucose concentrations of 200-450 mg/dl and control rats were divided into trained and sedentary subgroups. Training resulted in lower plasma free fatty acid concentrations and increased triceps muscle citrate synthase activity in both the control and diabetic rats; triglyceride concentrations were lowered by training only in the diabetic animals. Oral glucose tolerance and both basal and insulin-stimulated glucose uptake in hindquarter skeletal muscle were impaired in the diabetic rats, and plasma glucose concentrations (measured weekly) gradually increased during the experiment. Training did not improve the hyperglycemia, impaired glucose tolerance, or decreased skeletal muscle glucose uptake in the diabetic rats, nor did it alter these parameters in the normal control animals. In considering our results and those of previous studies in diabetic rats, we propose that exercise training may improve glucose homeostasis in animals with milder degrees of diabetes but fails to cause improvement in the more severely insulin-deficient, diabetic rat.  相似文献   

8.
9.
1. In the isolated perfused rat heart, the contractile activity and the oxygen uptake were varied by altering the aortic perfusion pressure, or by the atrial perfusion technique (;working heart'). 2. The maximum increase in the contractile activity brought about an eightfold increase in the oxygen uptake. The rate of glycolytic flux rose, while tissue contents of hexose monophosphates, citrate, ATP and creatine phosphate decreased, and contents of ADP and AMP rose. 3. The changes in tissue contents of adenine nucleotides during increased heart work were time-dependent. The ATP content fell temporarily (30s and 2min) after the start of left-atrial perfusion; at 5 and 10min values were normal; and at 30 and 60min values were decreased. ADP and AMP values were increased in the first 15min, but were at control values 30 or 60min after the onset of increased heart work. 4. During increased heart work changes in the tissue contents of adenine nucleotide and of citrate appeared to play a role in altered regulation of glycolysis at the level of phosphofructokinase activity. 5. In recirculation experiments increased heart work for 30min was associated with increased entry of [(14)C]glucose (11.1mm) and glycogen into glycolysis and a comparable increase in formation of products of glycolysis (lactate, pyruvate and (14)CO(2)). There was no major accumulation of intermediates. Glycogen was not a major fuel for respiration. 6. Increased glycolytic flux in Langendorff perfused and working hearts was obtained by the addition of insulin to the perfusion medium. The concomitant increases in the tissue values of hexose phosphates and of citrate contrasted with the decreased values of hexose monophosphates and of citrate during increased glycolytic flux obtained by increased heart work. 7. Decreased glycolytic flux in Langendorff perfused hearts was obtained by using acute alloxan-diabetic and chronic streptozotocin-diabetic rats; in the latter condition there were decreased tissue contents of hexose phosphates and of citrate. There were similar findings when working hearts from streptozotocin-diabetic rats with insulin added to the medium were compared with normal hearts. 8. The effects of insulin addition or of the chronic diabetic state could be explained in terms of an action of insulin on glucose transport. Increased heart work also acted at this site, but in addition there was evidence for altered regulation of glycolysis mediated by changes in tissue contents of adenine nucleotides or of citrate.  相似文献   

10.
11.
The present experiment was carried out to investigate the metabolism of palatinose (6-O-alpha-D-glucopyranosyl-D-fructose) in the rat. The bolus injection of palatinose (0.5 g/kg) in the tail vein of normal and streptozotocin (STZ) diabetic rats caused significant increments in glucose and insulin concentrations. However, in severe STZ diabetic rats (greater than 300 mg/dl of fasting plasma glucose) no significant change in glucose and insulin concentrations was observed. In liver perfusion, the gradual decrease in glucose output from the normal and mild STZ diabetic rat livers perfused with 20 mM Krebs-Ringer-Tris buffer pH 7.4 was prevented by the addition of 5.5 mM palatinose in the perfusate and fructose was detected in the effluent during the palatinose infusion. The results indicate that palatinose is metabolized to glucose and fructose in both normal and diabetic rat tissues, and this causes the increase in blood glucose concentration. On the other hand, the direct stimulatory effect of insulin release from pancreatic B-cell was not observed when the palatinose was infused into the isolated perfused rat pancreas. The study suggest that palatinose administered parenterally is metabolized by tissues and expected to be used as a source of fluid and energy supply.  相似文献   

12.
13.
14.
The isolated and perfused catfish liver showed (a) a decrease in liver glycogen, (b) a continuous increase in glucose output, and (c) a decrease of lactate in the medium. Insulin did not influence liver glycogen decay during the first 2 hr; thereafter the hormone induced an increase of glycogen, particularly when glucose was added into perfusate. In insulin treated liver, the glucose output was lower than controls in the first hours of perfusion; thereafter a re-uptake of glucose occurred. After 2-3 hr of perfusion, the lactate present in the medium was increased by insulin towards the starting level. The long lasting effects of insulin on catfish in vivo were confirmed.  相似文献   

15.
16.
17.
The effects of grisorixin, a monocarboxylic ionophore, were studied on isolated working rat hearts perfused with a suspension of washed pig erythrocytes (10% hematocrit). Grisorixin (2.5 microM) induced a transient stimulation of heart work, maximal at 5 min, expressed by an increase in heart rate (+21%) and aortic flow (+17%) and by an increase in coronary flow, maximal at 10 min (+47%). Concomitantly, myocardial Vo2 was slightly enhanced and the myocardial creatine phosphate level dropped (2 min). The lactate production increased by 82% (5 min) then dropped to the control value (10 min) and increased again till the 45th min (+211%), indicating a cardiac metabolic drift towards anaerobic glycolysis due to partial inhibition of the oxidative metabolism. Owing to its properties as an ionophore, grisorixin also induced a strong and rapid increase of potassium concentration in the perfusate and a decrease of sodium. Grisorixin was tested on hearts submitted to 20 min of hypoxic conditions. The hypoxia was rather mild and induced only very slight modifications of the ultrastructure. In the control series, heart rate and aortic flow decreased regularly while coronary flow and lactate production increased. Upon reoxygenation, the heart performances were rapidly restored. Grisorixin was administered according to four different protocols. When injected at the onset of hypoxia or 5 min later, it was able to maintain the aortic flow during the first minutes and induce a higher coronary dilation. These beneficial effects were short-lasting and no deleterious effects were found on the ultrastructure of hearts subjected to grisorixin whether after hypoxia or after reoxygenation.  相似文献   

18.
Diabetes mellitus (DM) is an important cardiovascular risk factor and is associated with abnormalities in endothelial and vascular smooth muscle cell function, evoked by chronic hyperglycemia and hyperlipidemia. Chronic insulin deficiency or resistance is marked by decreases in the intensity of glucose transport, glucose phosphorylation, and glucose oxidation, plus decreases in ATP levels in cardiac myocytes. It is important to search for new agents that promote glucose consumption in the heart and partially inhibit extensive fatty acid beta-oxidation observed in diabetic, ischemia. When the oxygen supply for myocardium is decreased, the heart accumulates potentially toxic intermediates of fatty acid beta-oxidation, that is, long-chain acylcarnitine and long-chain acyl-CoA metabolites. Exogenous glucose and heart glycogen become an important compensatory source of energy. Therefore we studied the effect of the antidiabetic 1,4-dihydropyridine compound cerebrocrast at concentrations from 10(-10) M to 10(-7) M on isolated rat hearts using the method of Langendorff, on physiological parameters and energy metabolism. Cerebrocrast at concentrations from 10(-10) M to 10(-7) M has a negative inotropic effect on the rat heart. It inhibits L-type Ca(2+)channels thereby diminishing the cellular Ca(2+) supply, reducing contractile activity, and oxygen consumption, that normally favors enhanced glucose uptake, metabolism, and production of high-energy phosphates (ATP content) in myocardium. Cerebrocrast decreases heart rate and left ventricular (LV) systolic pressure; at concentrations of 10(-10) M and 10(-9) M it evokes short-term vasodilatation of coronary arteries. Increase of ATP content in the myocytes induced by cerebrocrast has a ubiquitous role. It can preserve the integrity of the cell plasma membranes, maintain normal cellular function, and inhibit release of lactate dehydrogenase (LDH) from cells that is associated with diabetes and heart ischemia. Administration of cerebrocrast together with insulin shows that both compounds only slightly enhance glucose uptake in myocardium, but significantly normalize the rate of contraction and relaxation ( +/- dp/dt). The effect of insulin on coronary flow is more pronounced by administration of insulin together with cerebrocrast at a concentration of 10(-7) M. Cerebrocrast may promote a shift of glucose consumption from aerobic to anerobic conditions (through the negative inotropic properties), and may be very significant in prevention of cardiac ischemic episodes.  相似文献   

19.
The effect of insulin on glucose transport and glucose transporters was studied in perfused rat heart. Glucose transport was measured by the efflux of labelled 3-O-methylglucose from hearts preloaded with this hexose. Insulin stimulated 3-O-methylglucose transport by: (a) doubling the maximal velocity (Vmax); (b) decreasing the Kd from 6.9 to 2.7 mM; (c) increasing the Hill coefficient toward 3-O-methylglucose from 1.9 to 3.1; (d) increasing the efficiency of the transport process (k constant). Glucose transporters in enriched plasma and microsomal membranes from heart were quantified by the [3H]cytochalasin-B-binding assay. When added to normal hearts, insulin produced the following changes in the glucose transporters: (a) it increased the translocation of transporters from an intracellular pool to the plasma membranes; (b) it increased (from 1.6 to 2.7) the Hill coefficient of the transporters translocated into the plasma membranes toward cytochalasin B, suggesting the existence of a positive co-operativity among the transporters appearing in these membranes; (c) it increased the affinity of the transporters (and hence, possibly, of glucose) for cytochalasin B. The data provide evidence that the stimulatory effect of insulin on glucose transport may be due not to the sole translocation of intracellular glucose transporters to the plasma membrane, but to changes in the functional properties thereof.  相似文献   

20.
Epinephrine increases the oxidation of glucose in adipose tissue even when its lipolytic effects are markedly reduced or abolished by propranolol, nicotinic acid, ouabain, or thyroidectomy. In order to locate the site(s) at which epinephrine stimulates glucose utilization, we studied the effects of epinephrine on the oxidation of various metabolites of glucose. Epinephrine neither increased the production of (14)CO(2) from 1- or 3-(14)C-pyruvate nor affected pyruvate conversion to glyceride-glycerol. To assess the possibility that epinephrine might accelerate the entry of glucose into adipocytes, we studied the accumulation of the nonmetabolized sugar l-arabinose in the intracellular water of adipose tissue. Epinephrine increased arabinose penetration into adipocytes to a degree comparable with that caused by 0.1 mU/ml of insulin. Virtually identical results were obtained in tissues from thyroidectomized rats in which the lipolytic effects of epinephrine were significantly reduced. It is concluded that epinephrine increases glucose oxidation by promoting its entry into adipose tissue and that the effect is independent of lipolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号