首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrin-mediated platelet adhesion and aggregation are essential for sealing injured blood vessels and preventing blood loss, and excessive platelet aggregation can initiate arterial thrombosis, causing heart attacks and stroke. To ensure that platelets aggregate only at injury sites, integrins on circulating platelets exist in a low-affinity state and shift to a high-affinity state (in a process known as integrin activation or priming) after contacting a wounded vessel. The shift is mediated through binding of the cytoskeletal protein Talin to the beta subunit cytoplasmic tail. Here we show that platelets lacking the adhesion plaque protein Kindlin-3 cannot activate integrins despite normal Talin expression. As a direct consequence, Kindlin-3 deficiency results in severe bleeding and resistance to arterial thrombosis. Mechanistically, Kindlin-3 can directly bind to regions of beta-integrin tails distinct from those of Talin and trigger integrin activation. We have therefore identified Kindlin-3 as a novel and essential element for platelet integrin activation in hemostasis and thrombosis.  相似文献   

2.
Bin Liu 《Proteomics》2016,16(9):1341-1346
Microglia play important and dynamic roles in mediating a variety of physiological and pathological processes during the development, normal function and degeneration of the central nervous system. Application of SILAC‐based proteomic analysis would greatly facilitate the identification of cellular pathways regulating the multifaceted phenotypes of microglia. We and others have successfully SILAC‐labeled immortalized murine microglial cell lines in previous studies. In this study, we report the development and evaluation of a SILAC‐labeled primary rat microglia model. Although the isotope labeling scheme for primary microglia is drastically different from that of immortalized cell lines, our de novo and uninterrupted primary culture labeling protocol (DUP‐SILAC) resulted in sufficient incorporation of SILAC labels for mass spectrometry‐based proteomic profiling. In addition, label incorporation did not alter their morphology and response to endotoxin stimulation. Proteomic analysis of the endotoxin‐stimulated SILAC‐labeled primary microglia identified expected as well as potentially novel activation markers and pro‐inflammatory pathways that could be quantified in a more physiologically relevant cellular model system compared to immortalized cell lines. The establishment of primary microglia SILAC model will further expand our capacity for global scale proteomic profiling of pathways under various physiological and pathological conditions. Proteomic MS data are available via ProteomeXchange with identifier PXD002759.  相似文献   

3.
Defective tissue regeneration is thought to contribute to several human diseases, including neurodegenerative disorders, heart failure and various lung diseases. Boosting the regenerative capacity has been suggested a possible therapeutic approach. Methods to metabolically label newly synthesized proteins in vivo with stable isotopic forms of amino acids holds promise for the study of protein turnover and tissue regeneration that are fundamental to the sustained life of all organisms. Here, we used the "stable isotope labeling with amino acids in cell culture" (SILAC) approach to explore normal protein turnover and tissue regeneration in adult zebrafish. The ratio of labeled and unlabeled proteins/peptides in specific organs of zebrafish fed a SILAC diet containing (13)C(6)-labeled lysine was determined by liquid chromatography and tandem mass spectrometry. Labeling was highest in tissues with high regenerative capacity, including intestine, liver, and fin, whereas brain and heart displayed the lowest labeling. Proteins with high degree of labeling were mainly involved in catalytic or transport activity pathways. The technique also verified increased protein synthesis during regeneration of the caudal fin following amputation. This newly developed SILAC zebrafish model constitutes a novel tool to analyze tissue regeneration in an animal model amenable to genetic and pharmacologic manipulation.  相似文献   

4.
Mass spectrometry (MS)-based proteomics is increasingly applied in a quantitative format, often based on labeling of samples with stable isotopes that are introduced chemically or metabolically. In the stable isotope labeling by amino acids in cell culture (SILAC) method, two cell populations are cultured in the presence of heavy or light amino acids (typically lysine and/or arginine), one of them is subjected to a perturbation, and then both are combined and processed together. In this study, we describe a different approach--the use of SILAC as an internal or 'spike-in' standard--wherein SILAC is only used to produce heavy labeled reference proteins or proteomes. These are added to the proteomes under investigation after cell lysis and before protein digestion. The actual experiment is therefore completely decoupled from the labeling procedure. Spike-in SILAC is very economical, robust and in principle applicable to all cell- or tissue-based proteomic analyses. Applications range from absolute quantification of single proteins to the quantification of whole proteomes. Spike-in SILAC is especially advantageous when analyzing the proteomes of whole tissues or organisms. The protocol describes the quantitative analysis of a tissue sample relative to super-SILAC spike-in, a mixture of five SILAC-labeled cell lines that accurately represents the tissue. It includes the selection and preparation of the spike-in SILAC standard, the sample preparation procedure, and analysis and evaluation of the results.  相似文献   

5.
Ong SE  Mann M 《Nature protocols》2006,1(6):2650-2660
Stable isotope labeling by amino acids in cell culture (SILAC) is a simple, robust, yet powerful approach in mass spectrometry (MS)-based quantitative proteomics. SILAC labels cellular proteomes through normal metabolic processes, incorporating non-radioactive, stable isotope-containing amino acids in newly synthesized proteins. Growth medium is prepared where natural ("light") amino acids are replaced by "heavy" SILAC amino acids. Cells grown in this medium incorporate the heavy amino acids after five cell doublings and SILAC amino acids have no effect on cell morphology or growth rates. When light and heavy cell populations are mixed, they remain distinguishable by MS, and protein abundances are determined from the relative MS signal intensities. SILAC provides accurate relative quantification without any chemical derivatization or manipulation and enables development of elegant functional assays in proteomics. In this protocol, we describe how to apply SILAC and the use of nano-scale liquid chromatography coupled to electrospray ionization mass spectrometry for protein identification and quantification. This procedure can be completed in 8 days.  相似文献   

6.
Metabolic labeling techniques have recently become popular tools for the quantitative profiling of proteomes. Classical stable isotope labeling with amino acids in cell cultures (SILAC) uses pairs of heavy/light isotopic forms of amino acids to introduce predictable mass differences in protein samples to be compared. After proteolysis, pairs of cognate precursor peptides can be correlated, and their intensities can be used for mass spectrometry-based relative protein quantification. We present an alternative SILAC approach by which two cell cultures are grown in media containing isobaric forms of amino acids, labeled either with 13C on the carbonyl (C-1) carbon or 15N on backbone nitrogen. Labeled peptides from both samples have the same nominal mass and nearly identical MS/MS spectra but generate upon fragmentation distinct immonium ions separated by 1 amu. When labeled protein samples are mixed, the intensities of these immonium ions can be used for the relative quantification of the parent proteins. We validated the labeling of cellular proteins with valine, isoleucine, and leucine with coverage of 97% of all tryptic peptides. We improved the sensitivity for the detection of the quantification ions on a pulsing instrument by using a specific fast scan event. The analysis of a protein mixture with a known heavy/light ratio showed reliable quantification. Finally the application of the technique to the analysis of two melanoma cell lines yielded quantitative data consistent with those obtained by a classical two-dimensional DIGE analysis of the same samples. Our method combines the features of the SILAC technique with the advantages of isobaric labeling schemes like iTRAQ. We discuss advantages and disadvantages of isobaric SILAC with immonium ion splitting as well as possible ways to improve it.  相似文献   

7.
Kindlin-2 is known to play important roles in the development of mesoderm-derived tissues including myocardium, smooth muscle, cartilage and blood vessels. However, nothing is known for the role of Kindlin-2 in mesoderm-derived reproductive organs. Here, we report that loss of Kindlin-2 in Sertoli cells caused severe testis hypoplasia, abnormal germ cell development and complete infertility in male mice. Functionally, loss of Kindlin-2 inhibits proliferation, increases apoptosis, impairs phagocytosis in Sertoli cells and destroyed the integration of blood-testis barrier structure in testes. Mechanistically, Kindlin-2 interacts with LATS1 and YAP, the key components of Hippo pathway. Kindlin-2 impedes LATS1 interaction with YAP, and depletion of Kindlin-2 enhances LATS1 interaction with YAP, increases YAP phosphorylation and decreases its nuclear translocation. For clinical relevance, lower Kindlin-2 expression and decreased nucleus localization of YAP was found in SCOS patients. Collectively, we demonstrated that Kindlin-2 in Sertoli cells is essential for sperm development and male reproduction.Subject terms: Apoptosis, Male factor infertility  相似文献   

8.
Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) is a widespread method for metabolic labeling of cells and tissues in quantitative proteomics; however, incomplete incorporation of the label has so far restricted its wider use in plants. Here, we argue that differential labeling by two different versions of the labeled amino acids renders SILAC fully applicable to dark-grown plant cell lines. By comparing Arabidopsis thaliana cell cultures labeled with two versions of heavy Lys (Lys-4 and Lys-8), we show that this simple modification of the SILAC protocol enables similar quantitation accuracy, precision, and reproducibility as conventional SILAC in animal cells.  相似文献   

9.
Quantitative proteomics has increasingly gained impact in life science research as a tool to describe changes in protein expression between different cellular states. Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful technique for relative quantification of proteins. However, the accuracy of quantification is impaired by the metabolic conversion of arginine to proline resulting in additional heavy labeled proline peptide satellites. Here we reinvestigated the addition of unlabeled proline during cell cultivation under SILAC conditions considering several thousand peptides and demonstrated that the arginine-to-proline conversion is prevented independent of the cell line used.  相似文献   

10.
We have recently described a method, stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of relative protein abundances. Cells were metabolically labeled with deuterated leucine, leading to complete incorporation within about five cell doublings. Here, we investigate fully substituted 13C-labeled arginine in the SILAC method. After tryptic digestion, there is a single label at the C-terminal position in half of the peptides. Labeled and unlabeled peptides coelute in liquid chromatography-mass spectrometric analysis, eliminating quantitation error due to unequal sampling of ion profiles. Tandem mass spectrum interpretation and database identification are aided by the predictable shift of the y-ions in the labeled form. The quantitation of mixtures of total cell lysates in known ratios resolved on a one-dimensional SDS-PAGE gel produced consistent and reproducible results with relative standard deviations better than five percent under optimal conditions.  相似文献   

11.
Kindler Syndrome (KS), characterized by transient skin blistering followed by abnormal pigmentation, skin atrophy, and skin cancer, is caused by mutations in the FERMT1 gene. Although a few KS patients have been reported to also develop ulcerative colitis (UC), a causal link to the FERMT1 gene mutation is unknown. The FERMT1 gene product belongs to a family of focal adhesion proteins (Kindlin-1, -2, -3) that bind several β integrin cytoplasmic domains. Here, we show that deleting Kindlin-1 in mice gives rise to skin atrophy and an intestinal epithelial dysfunction with similarities to human UC. This intestinal dysfunction results in perinatal lethality and is triggered by defective intestinal epithelial cell integrin activation, leading to detachment of this barrier followed by a destructive inflammatory response.  相似文献   

12.
Type XVI collagen belongs to the family of fibril-associated collagens with interrupted triple helices (FACIT). Recently, high affinity to integrin alpha1beta1 has been shown allowing cells expressing those integrins to attach and spread on recombinant type XVI collagen. Here, we show that type XVI collagen is overexpressed in dysplastic areas of mucosal epithelium from oral squamous cell carcinoma (OSCC) patients. Induction of its expression in OSCC cell lines (COLXVI cells) leads to an increased expression of Kindlin-1. Moreover, we demonstrate a significantly increased Kindlin-1/beta1-integrin interaction. Additionally, we detected a higher number of activated beta1-integrins in COLXVI cells and found a neo-expression of alpha1 integrin subunit on these cells. FACS analysis revealed a significantly higher amount of COLXVI cells in S-phase and G2/M-phase 6 h after synchronisation leading to a markedly higher proliferation activity. Blocking beta1-integrins with a specific antibody resulted in reduced proliferation of COLXVI cells. In summary, we demonstrate that overexpression of type XVI collagen in aberrant oral keratinocytes leads to Kindlin-1 induction, increased Kindlin-1/beta1-integrin interaction, integrin activation and subsequently to a proliferative cellular phenotype.  相似文献   

13.
Mutations of integrin-interacting protein Kindlin-1 cause Kindler syndrome and deregulation of Kindlin-1 is implicated in human cancers. The Kindlin-1-related diseases are confined in limited tissue types. However, Kindlin-1 tissue distribution and the dogma that governs Kindlin-1 expression in normal human body are elusive. This study examined Kindlin-1 expression in normal human adult organs, human and mouse embryonic organs by immunohistochemical analyses. We identified a general principle that the level of Kindlin-1 expression in tissues is tightly correlated with the corresponding germ layers from which these tissues originate. We compared the expression of Kindlin-1 with Kindlin-2 and found that Kindlin-1 is highly expressed in epithelial tissues derived from ectoderm and endoderm, whereas Kindlin-2 is mainly expressed in mesoderm-derived tissues. Likewise, Kindlin-1 was also found highly expressed in endoderm/ectoderm-derived tissues in human and mouse embryos. Our findings indicate that Kindlin-1 may play an importance role in the development of endoderm/ectoderm related tissues.  相似文献   

14.
We previously demonstrated that hyperglycemic-obese (obob) mice fed a 1% corn oil diet accumulated 10 times as much hepatic cholesterol as did their non-obese (+/?) littermates fed this diet because of difficulty in removal of cholesterol from the liver rather than from increased synthesis. Furthermore, feeding the bile acid analog Delta(22)-5beta-taurocholenic acid completely prevented the accumulation of hepatic cholesterol in obob mice fed the 1% corn oil diet. The hypothesis to be tested in the current study is that these aspects of cholesterol metabolism in the obob mouse do not occur in the hyperinsulinemic and insulin-resistant gold thioglucose obese mouse. Gold thioglucose obese (gtgo) and non-obese (ngtgo) mice were fed diets containing either 1% corn oil or 40% lard each with or without added taurocholenic acid for 6 weeks and then given a 250 mg meal of [U-(14)C]-glucose with incorporation of label into hepatic cholesterol and fatty acid measured 2 hours later. Consistent with earlier results in the obob model, incorporation of labeled glucose was significantly increased in obese compared with non-obese mice fed 1% corn oil and significantly reduced either by feeding 40% lard or by adding taurocholenic acid to the diet. In addition, taurocholenic acid greatly increased incorporation of labeled glucose into hepatic cholesterol in obese or non-obese mice fed either diet. In contrast to obob mice, the percentage of fat in the liver of gtgo mice was increased only 50% compared with ngtgo mice. The comparable increase in obob mice was 480%. Hepatic cholesterol did not increase significantly in the liver of gtgo mice fed 1% corn oil when compared with the ngtgo controls. The comparable increase in obob mice fed 1% corn oil was 350%. Also in marked contrast to obob mice, feeding taurocholenic acid increased hepatic cholesterol compared with non-obese controls fed either diet. The results are discussed in the light of the presence of circulating leptin in gtgo but not in obob mice.  相似文献   

15.
The von Hippel‐Lindau (VHL) tumour suppressor gene plays a central role in development of clear cell renal cell carcinoma (RCC). Using a cell line pair generated from the VHL‐defective RCC cell line UMRC2 by transfection with vector control or VHL (?/+VHL) and stable isotope labelling with amino acids in cell culture (SILAC) followed by enrichment of plasma membrane proteins by cell surface biotinylation/avidin‐affinity chromatography and analysis by GeLC‐MS/MS, VHL‐associated changes in plasma membrane proteins were analysed. Comparative analysis of ‐/+VHL cells identified 19 differentially expressed proteins which were confirmed by reciprocal SILAC labelling. These included several proteins previously reported to be VHL targets, such as transferrin receptor 1 and the α3 and β1 integrin subunits and novel findings including upregulation of CD166 and CD147 in VHL‐defective cells. Western blotting confirmed these changes and also revealed VHL‐dependent alterations in protein form for CD147 and CD166, which in the case of CD166 was shown to be due to differential glycosylation. Analysis of patient‐matched normal and malignant renal tissues confirmed these differences were also present in vivo in a subset of clear cell RCCs. These results illustrate the potential of this approach for identifying VHL‐dependent proteins that may be important in tumorigenesis.  相似文献   

16.
Both talin head domain and kindlin-2 interact with integrin β cytoplasmic tails, and they function in concert to induce integrin activation. Binding of talin head domain to β cytoplasmic tails has been characterized extensively, but information on the interaction of kindin-2 with this integrin segment is limited. In this study, we systematically examine the interactions of kindlin-2 with integrin β tails. Kindlin-2 interacted well with β(1) and β(3) tails but poorly with the β(2) cytoplasmic tail. This binding selectivity was determined by the non-conserved residues, primarily the three amino acids at the extreme C terminus of the β(3) tail, and the sequence in β(2) was non-permissive. The region at the C termini of integrin β(1) and β(3) tails recognized by kindlin-2 was a binding core of 12 amino acids. Kindlin-2 and talin head do not interact with one another but can bind simultaneously to the integrin β(3) tail without enhancing or inhibiting the interaction of the other binding partner. Kindlin-2 itself failed to directly unclasp integrin α/β tail complex, indicating that kindlin-2 must cooperate with talin to support the integrin activation mechanism.  相似文献   

17.
18.
Defects in protein turnover have been implicated in a broad range of diseases, but current proteomics methods of measuring protein turnover are limited by the software tools available. Conventional methods require indirect approaches to differentiate newly synthesized protein when synthesized from partially labeled precursor pools. To address this, we have developed Topograph, a software platform which calculates the fraction of peptides that are from newly synthesized proteins and their turnover rates. A unique feature of Topograph is the ability to calculate amino acid precursor pool enrichment levels which allows for accurate calculations when the precursor pool is not fully labeled, and the approach used by Topograph is applicable regardless of the stable isotope label used. We validate the Topograph algorithms using data acquired from a mouse labeling experiment and demonstrate the influence that precursor pool corrections can have on protein turnover measurements.Methods of measuring protein synthesis and degradation using stable or radioactive isotope labels have existed for decades. The isotope label is introduced in the form of a labeled amino acid or amino acid precursor, and the incorporation or removal of that label from protein is used to estimate average protein turnover rates (1, 2). Historically, the amount of stable isotope label incorporated into a protein is measured by enriching for the protein (e.g. affinity chromatography, gel electrophoresis, and other biochemical methods), hydrolyzing the protein to amino acids, derivatizing the amino acids, and measuring the labeled amino acid by gas chromatography-mass spectrometry or gas chromatography-combustion-isotope ratio mass spectrometry (3, 4). More recently, proteomics methods have been developed that measure the labeled amino acid on the peptide level, eliminating the need for a protein enrichment step and enabling the monitoring of many proteins in a single experiment (5).Proteomics approaches to measuring protein turnover rates in mice have been accomplished by the introduction of a 15N stable isotope label. The labeled diets were created by supplementing a protein-free diet with a 15N enriched protein source. Price et al. (6) generated 15N-labeled protein from the alga, Spirulina platensis and Zhang et al. (7) introduced 15N-label in the form of lysate from the bacterium, Ralstonia eutropha. An advantage of using complete 15N labeling is the rapid incorporation of 15N and separation of isotope distributions between labeled and natural isotope abundance peptides, which reduces the need to deconvolute the two distributions. However, current methods require that the dietary protein content be derived from bacterial or alga lysate, a diet that is not normally fed to laboratory mice. As a result, measurements of protein turnover may not reflect conventional mouse model systems because of effects of diet on protein and amino acid metabolism. A more recent work by Claydon et al. (8) demonstrated a stable isotope labeling method by supplementing labeled valine into a standard mouse diet.The complex data generated from these analyses creates a data processing and analysis challenge; exemplified by recent software platforms that have been developed. Guan et al. (9) and Hoopmann et al. (10) demonstrated data analysis pipelines for 15N labeled SILAM and SILAC experiments. Here we describe the software platform, Topograph, we have developed for the analysis of liquid chromatography-tandem MS (LC-MS/MS) data from samples with isotopic labels. Topograph is able to deconvolute the complex spectra that may result from overlapping isotope distributions, regardless of the isotope label used. More uniquely, Topograph is able to calculate the relative isotope abundance (RIA)1 of the amino acid precursor pool, which is necessary to correctly determine the amount of newly synthesized peptide and to subsequently calculate peptide and protein turnover rates.  相似文献   

19.
High‐resolution MS/MS spectra of peptides can be deisotoped to identify monoisotopic masses of peptide fragments. The use of such masses should improve protein identification rates. However, deisotoping is not universally used and its benefits have not been fully explored. Here, MS2‐Deisotoper, a tool for use prior to database search, is used to identify monoisotopic peaks in centroided MS/MS spectra. MS2‐Deisotoper works by comparing the mass and relative intensity of each peptide fragment peak to every other peak of greater mass, and by applying a set of rules concerning mass and intensity differences. After comprehensive parameter optimization, it is shown that MS2‐Deisotoper can improve the number of peptide spectrum matches (PSMs) identified by up to 8.2% and proteins by up to 2.8%. It is effective with SILAC and non‐SILAC MS/MS data. The identification of unique peptide sequences is also improved, increasing the number of human proteoforms by 3.7%. Detailed investigation of results shows that deisotoping increases Mascot ion scores, improves FDR estimation for PSMs, and leads to greater protein sequence coverage. At a peptide level, it is found that the efficacy of deisotoping is affected by peptide mass and charge. MS2‐Deisotoper can be used via a user interface or as a command‐line tool.  相似文献   

20.
Quantitative proteomics has traditionally been performed by two-dimensional gel electrophoresis, but recently, mass spectrometric methods based on stable isotope quantitation have shown great promise for the simultaneous and automated identification and quantitation of complex protein mixtures. Here we describe a method, termed SILAC, for stable isotope labeling by amino acids in cell culture, for the in vivo incorporation of specific amino acids into all mammalian proteins. Mammalian cell lines are grown in media lacking a standard essential amino acid but supplemented with a non-radioactive, isotopically labeled form of that amino acid, in this case deuterated leucine (Leu-d3). We find that growth of cells maintained in these media is no different from growth in normal media as evidenced by cell morphology, doubling time, and ability to differentiate. Complete incorporation of Leu-d3 occurred after five doublings in the cell lines and proteins studied. Protein populations from experimental and control samples are mixed directly after harvesting, and mass spectrometric identification is straightforward as every leucine-containing peptide incorporates either all normal leucine or all Leu-d3. We have applied this technique to the relative quantitation of changes in protein expression during the process of muscle cell differentiation. Proteins that were found to be up-regulated during this process include glyceraldehyde-3-phosphate dehydrogenase, fibronectin, and pyruvate kinase M2. SILAC is a simple, inexpensive, and accurate procedure that can be used as a quantitative proteomic approach in any cell culture system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号