首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saccharomyces cerevisiae, the budding yeast, is the most thoroughly studied eukaryote at the cellular, molecular, and genetic levels. Yet, until recently, we knew very little about its ecology or population and evolutionary genetics. In recent years, it has been recognized that S. cerevisiae occupies numerous habitats and that populations harbour important genetic variation. There is therefore an increasing interest in understanding the evolutionary forces acting on the yeast genome. Several researchers have used the tools of functional genomics to study natural isolates of this unicellular fungus. Here, we review some of these studies, and show not only that budding yeast is a prime model system to address fundamental molecular and cellular biology questions, but also that it is becoming a powerful model species for ecological and evolutionary genomics studies as well.  相似文献   

2.
The role of the yeast vacuole, a functional analogue of the mammalian lysosome, in the turnover of proteins and organelles has been well documented. This review provides an overview of the current knowledge of vesicle mediated vacuolar transport in the yeast Saccharomyces cerevisiae cells. Due to the conservation of the molecular transport machinery S. cerevisiae has become an important model system of vacuolar trafficking because of the facile application of genetics, molecular biology and biochemistry.  相似文献   

3.
With the recent development of powerful molecular genetic tools, Kluyveromyces lactis has become an excellent alternative yeast model organism for studying the relationships between genetics and physiology. In particular, comparative yeast research has been providing insights into the strikingly different physiological strategies that are reflected by dominance of respiration over fermentation in K. lactis versus Saccharomyces cerevisiae. Other than S. cerevisiae, whose physiology is exceptionally affected by the so-called glucose effect, K. lactis is adapted to aerobiosis and its respiratory system does not underlie glucose repression. As a consequence, K. lactis has been successfully established in biomass-directed industrial applications and large-scale expression of biotechnically relevant gene products. In addition, K. lactis maintains species-specific phenomena such as the "DNA-killer system, " analyses of which are promising to extend our knowledge about microbial competition and the fundamentals of plasmid biology.  相似文献   

4.
施永彬  李钧敏  金则新 《生态学报》2012,32(18):5846-5858
生态基因组学是一个整合生态学、分子遗传学和进化基因组学的新兴交叉学科。生态基因组学将基因组学的研究手段和方法引入生态学领域,通过将群体基因组学、转录组学、蛋白质组学等手段与方法将个体、种群及群落、生态系统不同层次的生态学相互作用整合起来,确定在生态学响应及相互作用中具有重要意义的关键的基因和遗传途径,阐明这些基因及遗传途径变异的程度及其生态和进化后果的特征,从基因水平探索有机体响应天然环境(包括生物与非生物的环境因子)的遗传学机制。生态基因组学的研究对象可以分为模式生物与非模式生物两大类。拟南芥、酿酒酵母等模式生物在生态基因组学领域发挥了重要作用。随着越来越多基因组学技术的开发与完善,越来越多的非模式生物生态基因组学的研究将为生态学的发展提供重要的理论与实践依据。生态基因组学最核心的方法包括寻找序列变异、研究基因差异表达和分析基因功能等方法。生态基因组学已广泛渗透到生态学的相关领域中,将会在生物对环境的响应、物种间的相互作用、进化生态学、全球变化生态学、入侵生态学、群落生态学等研究领域发挥更大的作用。  相似文献   

5.
The neutral theory of molecular evolution predicts that important proteins evolve more slowly than unimportant ones. High-throughput gene-knockout experiments in model organisms have provided information on the dispensability, and therefore importance, of thousands of proteins in a genome. However, previous studies of the correlation between protein dispensability and evolutionary rate were equivocal, and it has been proposed that the observed correlation is due to the covariation with the level of gene expression or is limited to duplicate genes. We here analyzed the gene dispensability data of the yeast Saccharomyces cerevisiae and estimated protein evolutionary rates by comparing S. cerevisiae with nine species of varying degrees of divergence from S. cerevisiae. The correlation between gene dispensability and evolutionary rate, although low, is highly significant, even when the gene expression level is controlled for or when duplicate genes are excluded. Our results thus support the hypothesis of lower evolution rates for more important proteins, a widely used principle in the daily practice of molecular biology. When the evolutionary rate is estimated from closely related species, the ratio between the mean rate of nonessential proteins to that of essential proteins is 1.4. This ratio declines to 1.1 when the evolutionary rate is estimated from distantly related species, suggesting that the importance of a protein may change in evolution, so the dispensability data obtained from a model organism only predicts a short-term rate of protein evolution. A comparison of the fitness contributions of orthologous genes in yeast and nematode supports this conclusion.  相似文献   

6.
Many different yeast species can take part in spontaneous fermentations, but the species of the genus Saccharomyces, including Saccharomyces cerevisiae in particular, play a leading role in the production of fermented beverages and food. In recent years, the development of whole-genome scanning techniques, such as DNA chip-based analysis and high-throughput sequencing methods, has considerably increased our knowledge of fermentative Saccharomyces genomes, shedding new light on the evolutionary history of domesticated strains and the molecular mechanisms involved in their adaptation to fermentative niches. Genetic exchange frequently occurs between fermentative Saccharomyces and is an important mechanism for generating diversity and for adaptation to specific ecological niches. We review and discuss here recent advances in the genomics of Saccharomyces species and related hybrids involved in major fermentation processes.  相似文献   

7.
Despite it being the darling of fungal genomics, we know little about either the ecology or reproductive biology of the budding yeast, Saccharomyces cerevisiae, in nature. A recent study by Ruderfer et al. estimated that the ancestors of three S. cerevisiae genomes outcrossed approximately once every 50,000 generations, confirming the view that outcrossing is infrequent in natural populations of S. cerevisiae. This study also inferred the genomic positions of past recombination events. By comparing past recombination events with present-day recombination rates, this study lays the groundwork for determining whether recombination has improved the long-term survival of descendant lineages by bringing together favorable alleles, a longstanding question in evolutionary genetics.  相似文献   

8.
Genome sequences of multiple individuals are essential to determine the forces shaping sequence variation as well as to understand the relationship between genotype and phenotype. Because of their wide ecological, geographical and genetic diversity, yeast species represent an ideal model system for population genomics. Recently, there has been a renewed interest in characterizing the genetic diversity within yeast species such as Saccharomyces cerevisiae and Saccharomyces paradoxus. Here, we review recent progress in the exploration of the intraspecific diversity using large collections of yeast isolates. These recent large-scale polymorphism surveys have increased our understanding of the population structures as well as the evolutionary history of the species. In addition, these resources represent a powerful framework for dissecting the relationship between genotype and phenotype.  相似文献   

9.
The budding yeast, Saccharomyces cerevisiae, is a leading system in genetics, genomics and molecular biology and is becoming a powerful tool to illuminate ecological and evolutionary principles. However, little is known of the ecology and population structure of this species in nature. Here, we present a field survey of this yeast at an unprecedented scale and have performed population genetics analysis of Chinese wild isolates with different ecological and geographical origins. We also included a set of worldwide isolates that represent the maximum genetic variation of S. cerevisiae documented so far. We clearly show that S. cerevisiae is a ubiquitous species in nature, occurring in highly diversified substrates from human‐associated environments as well as habitats remote from human activity. Chinese isolates of S. cerevisiae exhibited strong population structure with nearly double the combined genetic variation of isolates from the rest of the world. We identified eight new distinct wild lineages (CHN I–VIII) from a set of 99 characterized Chinese isolates. Isolates from primeval forests occur in ancient and significantly diverged basal lineages, while those from human‐associated environments generally cluster in less differentiated domestic or mosaic groups. Basal lineages from primeval forests are usually inbred, exhibit lineage‐specific karyotypes and are partially reproductively isolated. Our results suggest that greatly diverged populations of wild S. cerevisiae exist independently of and predate domesticated isolates. We find that China harbours a reservoir of natural genetic variation of S. cerevisiae and perhaps gives an indication of the origin of the species.  相似文献   

10.
Barrientos A 《IUBMB life》2003,55(2):83-95
The yeast Saccharomyces cerevisiae is an excellent model for gaining insights into the molecular basis of human mitochondrial disorders, particularly those resulting from impaired mitochondrial metabolism. Yeast is a very well characterized system and most of our current knowledge about mitochondrial biogenesis in humans derives from yeast genetics and biochemistry. Systematic yeast genome-wide approaches have allowed for the identification of human disease genes. In addition, the functional characterization of a large number of yeast gene products resident in mitochondria has been instrumental for the later identification and characterization of their human orthologs. Here I will review the molecular and biochemical characterization of several mitochondrial diseases that have been ascribed to mutations in genes that were first found in yeast to be necessary for the assembly of the mitochondrial respiratory chain. The usefulness of yeast as a model system for human mitochondrial disorders is evaluated.  相似文献   

11.
Chronological aging-induced apoptosis in yeast   总被引:1,自引:0,他引:1  
Saccharomyces cerevisiae is the simplest among the major eukaryotic model organisms for aging and diseases. Longevity in the chronological life span paradigm is measured as the mean and maximum survival period of populations of non-dividing yeast. This paradigm has been used successfully to identify several life-regulatory genes and three evolutionary conserved pro-aging pathways. More recently, Schizosaccharomyces pombe has been shown to age chronologically in a manner that resembles that of S. cerevisiae and that depends on the activity of the homologues of two pro-aging proteins previously identified in the budding yeast. Both yeast show features of apoptotic death during chronological aging. Here, we review some fundamental aspects of the genetics of chronological aging and the overlap between yeast aging and apoptotic processes with particular emphasis on the identification of an aging/death program that favors the dedifferentiation and regrowth of a few better adapted mutants generated within populations of aging S. cerevisiae. We also describe the use of a genome-wide screening technique to gain further insights into the mechanisms of programmed death in populations of chronologically aging S. cerevisiae.  相似文献   

12.
13.
We have analyzed the evolution of chromosome maps of Hemiascomycetes by comparing gene order and orientation of the 13 yeast species partially sequenced in this program with the genome map of Saccharomyces cerevisiae. From the analysis of nearly 8000 situations in which two distinct genes having homologs in S. cerevisiae could be identified on the sequenced inserts of another yeast species, we have quantified the loss of synteny, the frequency of single gene deletion and the occurrence of gene inversion. Traces of ancestral duplications in the genome of S. cerevisiae could be identified from the comparison with the other species that do not entirely coincide with those identified from the comparison of S. cerevisiae with itself. From such duplications and from the correlation observed between gene inversion and loss of synteny, a model is proposed for the molecular evolution of Hemiascomycetes. This model, which can possibly be extended to other eukaryotes, is based on the reiteration of events of duplication of chromosome segments, creating transient merodiploids that are subsequently resolved by single gene deletion events.  相似文献   

14.
15.
There is growing realisation that integrating genetics and ecology is critical in the context of biological invasions, since the two are explicitly linked. So far, the focus of ecological genetics of invasive alien species (IAS) has been on determining the sources and routes of invasions, and the genetic make-up of founding populations, which is critical for defining and testing ecological and evolutionary hypotheses. However an ecological genetics approach can be extended to investigate questions about invasion success and impacts on native, recipient species. Here, we discuss recent progress in the field, provide overviews of recent methodological advances, and highlight areas that we believe are of particular interest for future research. First, we discuss the main insights from studies that have inferred source populations and invasion routes using molecular genetic data, with particular focus on the role of genetic diversity, adaptation and admixture in invasion success. Second, we consider how genetic tools can lead to a better understanding of patterns of dispersal, which is critical to predicting the spread of invasive species, and how studying invasions can shed light on the evolution of dispersal. Finally, we explore the potential for combining molecular genetic data and ecological network modelling to investigate community interactions such as those between predator and prey, and host and parasite. We conclude that invasions are excellent model systems for understanding the role of natural selection in shaping phenotypes and that an ecological genetics approach offers great potential for addressing fundamental questions in invasion biology.  相似文献   

16.
Huang B  Guo J  Yi B  Yu X  Sun L  Chen W 《Biotechnology letters》2008,30(7):1121-1137
Heterologous expression of genes involved in the biosynthesis of various products is of increasing interest in biotechnology and in drug research and development. Microbial cells are most appropriate for this purpose. Availability of more microbial genomic sequences in recent years has greatly facilitated the elucidation of metabolic and regulatory networks and helped gain overproduction of desired metabolites or create novel production of commercially important compounds. Saccharomyces cerevisiae, as one of the most intensely studied eukaryotic model organisms with a rich density of knowledge detailing its genetics, biochemistry, physiology, and large-scale fermentation performance, can be capitalized upon to enable a substantial increase in the industrial application of this yeast. In this review, we describe recent efforts made to produce commercial secondary metabolites in Saccharomyces cerevisiae as pharmaceuticals. As natural products are increasingly becoming the center of attention of the pharmaceutical and nutraceutical industries, such as naringenin, coumarate, artemisinin, taxol, amorphadiene and vitamin C, the use of S. cerevisiae for their production is only expected to expand in the future, further allowing the biosynthesis of novel molecular structures with unique properties.  相似文献   

17.
With the recent development of powerful molecular genetic tools, Kluyveromyces lactis has become an excellent alternative yeast model organism for studying the relationships between genetics and physiology. In particular, comparative yeast research has been providing insights into the strikingly different physiological strategies that are reflected by dominance of respiration over fermentation in K. lactis versus Saccharomyces cerevisiae. Other than S. cerevisiae, whose physiology is exceptionally affected by the so-called glucose effect, K. lactis is adapted to aerobiosis and its respiratory system does not underlie glucose repression. As a consequence, K. lactis has been successfully established in biomass-directed industrial applications and large-scale expression of biotechnically relevant gene products. In addition, K. lactis maintains species-specific phenomena such as the “DNA-killer system,” analyses of which are promising to extend our knowledge about microbial competition and the fundamentals of plasmid biology.  相似文献   

18.
A synthesis between community ecology and evolutionary biology is emerging that identifies how genetic variation and evolution within one species can shape the ecological properties of entire communities and, in turn, how community context can govern evolutionary processes and patterns. This synthesis incorporates research on the ecology and evolution within communities over short timescales (community genetics and diffuse coevolution), as well as macroevolutionary timescales (community phylogenetics and co-diversification of communities). As we discuss here, preliminary evidence supports the hypothesis that there is a dynamic interplay between ecology and evolution within communities, yet researchers have not yet demonstrated convincingly whether, and under what circumstances, it is important for biologists to bridge community ecology and evolutionary biology. Answering this question will have important implications for both basic and applied problems in biology.  相似文献   

19.
Justin C. Fay 《Molecular ecology》2012,21(22):5387-5389
Domesticated organisms demonstrate our capacity to influence wild species but also provide us with the opportunity to understand rapid evolution in the context of substantially altered environments and novel selective pressures. Recent advances in genetics and genomics have brought unprecedented insights into the domestication of many organisms and have opened new avenues for further improvements to be made. Yet, our ability to engineer biological systems is not without limits; genetic manipulation is often quite difficult. The budding yeast, Saccharomyces cerevisiae, is not only one of the most powerful model organisms, but is also the premier producer of fermented foods and beverages around the globe. As a model system, it entertains a hefty workforce dedicated to deciphering its genome and the function it encodes at a rich mechanistic level. As a producer, it is used to make leavened bread, and dozens of different alcoholic beverages, such as beer and wine. Yet, applying the awesome power of yeast genetics to understanding its origins and evolution requires some knowledge of its wild ancestors and the environments from which they were derived. A number of surprisingly diverse lineages of S. cerevisiae from both primeval and secondary forests in China have been discovered by Wang and his colleagues. These lineages substantially expand our knowledge of wild yeast diversity and will be a boon to elucidating the ecology, evolution and domestication of this academic and industrial workhorse.  相似文献   

20.
Wu CA  Lowry DB  Cooley AM  Wright KM  Lee YW  Willis JH 《Heredity》2008,100(2):220-230
The plant genus Mimulus is rapidly emerging as a model system for studies of evolutionary and ecological functional genomics. Mimulus contains a wide array of phenotypic, ecological and genomic diversity. Numerous studies have proven the experimental tractability of Mimulus in laboratory and field studies. Genomic resources currently under development are making Mimulus an excellent system for determining the genetic and genomic basis of adaptation and speciation. Here, we introduce some of the phenotypic and genetic diversity in the genus Mimulus and highlight how direct genetic studies with Mimulus can address a wide spectrum of ecological and evolutionary questions. In addition, we present the genomic resources currently available for Mimulus and discuss future directions for research. The integration of ecology and genetics with bioinformatics and genome technology offers great promise for exploring the mechanistic basis of adaptive evolution and the genetics of speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号