首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Cingulin (CGN) and paracingulin (CGNL1) are structurally related proteins that regulate Rho family GTPases by recruiting guanine nucleotide exchange factors to epithelial junctions. Although the subcellular localization of cingulin and paracingulin is likely to be essential for their role as adaptor proteins, nothing is known on their in vivo localization, and their dynamics of exchange with the junctional membrane. To address these questions, we generated stable clones of MDCK cells expressing fluorescently tagged cingulin and paracingulin. By FRAP analysis, cingulin and paracingulin show a very similar dynamic behaviour, with recovery curves and mobile fractions that are distinct from ZO-1, and indicate a rapid exchange with a cytosolic pool. Interestingly, only paracingulin, but not cingulin, is peripherally localized in isolated cells, requires the integrity of the microtubule cytoskeleton to be stably anchored to junctions, and associates with E-cadherin. In contrast, both proteins require the integrity of the actin cytoskeleton to maintain their junctional localization. Although cingulin and paracingulin form a complex and can interact in vitro, the junctional recruitment and the dynamics of membrane exchange of paracingulin is independent of cingulin, and vice-versa. In summary, cingulin and paracingulin show a similar dynamic behaviour, but partially distinct localizations and functional interactions with the cytoskeleton, and are recruited independently to junctions.  相似文献   

2.
Paracingulin is a 160-kDa protein localized in the cytoplasmic region of epithelial tight and adherens junctions, where it regulates RhoA and Rac1 activities by interacting with guanine nucleotide exchange factors. Here, we investigate the molecular mechanisms that control the recruitment of paracingulin to cell-cell junctions. We show that paracingulin forms a complex with the tight junction protein ZO-1, and the globular head domain of paracingulin interacts directly with ZO-1 through an N-terminal region containing a conserved ZIM (ZO-1-Interaction-Motif) sequence. Recruitment of paracingulin to cadherin-based cell-cell junctions in Rat1 fibroblasts requires the ZIM-containing region, whereas in epithelial cells removal of this region decreases the junctional localization of paracingulin at tight junctions but not at adherens junctions. Depletion of ZO-1, but not ZO-2, reduces paracingulin accumulation at tight junctions. A yeast two-hybrid screen identifies both ZO-1 and the adherens junction protein PLEKHA7 as paracingulin-binding proteins. Paracingulin forms a complex with PLEKHA7 and its interacting partner p120ctn, and the globular head domain of paracingulin interacts directly with a central region of PLEKHA7. Depletion of PLEKHA7 from Madin-Darby canine kidney cells results in the loss of junctional localization of paracingulin and a decrease in its expression. In summary, we characterize ZO-1 and PLEKHA7 as paracingulin-interacting proteins that are involved in its recruitment to epithelial tight and adherens junctions, respectively.  相似文献   

3.
Paracingulin is an M(r) 150-160 kDa cytoplasmic protein of vertebrate epithelial tight and adherens junctions and comprises globular head, coiled-coil rod, and globular tail domains. Unlike its homologous tight junction protein cingulin, paracingulin has been implicated in the control of junction assembly and has been localized at extrajunctional sites in association with actin filaments. Here we analyze the role of paracingulin domains, and specific regions within the head and rod domains, in the function and localization of paracingulin by inducible overexpression of exogenous proteins in epithelial Madin Darby canine kidney (MDCK) cells and by expression of mutated and chimeric constructs in Rat1 fibroblasts and MDCK cells. The overexpression of the rod + tail domains of paracingulin perturbs the development of the tight junction barrier and Rac1 activation during junction assembly by the calcium switch, indicating that regulation of junction assembly by paracingulin is mediated by these domains. Conversely, only constructs containing the head domain target to junctions in MDCK cells and Rat1 fibroblasts. Furthermore, expression of chimeric cingulin and paracingulin constructs in Rat1 fibroblasts and MDCK cells identifies specific sequences within the head and rod domains of paracingulin as critical for targeting to actin filaments and regulation of junction assembly, respectively. In summary, we characterize the functionally important domains of paracingulin that distinguish it from cingulin.  相似文献   

4.
5.
Cingulin, a protein component of the submembrane plaque of tight junctions (TJ), contains globular and coiled-coil domains and interacts in vitro with several TJ and cytoskeletal proteins, including the PDZ protein ZO-1. Overexpression of Xenopus cingulin in transfected Xenopus A6 cells resulted in the disruption of endogenous ZO-1 localization, suggesting that cingulin functionally interacts with ZO-1. Glutathione S-transferase pull-down experiments showed that a conserved ZO-1 interaction motif (ZIM) at the NH(2) terminus of cingulin is required for cingulin-ZO-1 interaction in vitro. An NH(2)-terminal region of cingulin, containing the ZIM, was sufficient, when fused to coiled-coil sequences, to target transfected cingulin to junctions. However, deletion of the ZIM did not abolish junctional localization of transfected cingulin in A6 cells, suggesting that cingulin can be recruited to TJ through multiple protein interactions. Interestingly, the ZIM was required for cingulin recruitment into ZO-1-containing adherens junctions of Rat-1 fibroblasts, indicating that cingulin junctional recruitment does not require the molecular context of TJ. Cingulin coiled-coil sequences enhanced the junctional accumulation of expressed cingulin head region in A6 cells, but purified recombinant cingulin did not form filaments under physiological conditions in vitro, suggesting that the cingulin coiled-coil domain acts primarily by promoting dimerization.  相似文献   

6.
7.
Tight junctions consist of many proteins, including transmembrane and associated cytoplasmic proteins, which act to provide a barrier regulating transport across epithelial and endothelial tissues. These junctions are dynamic structures that are able to maintain barrier function during tissue remodelling and rapidly alter it in response to extracellular signals. Individual components of tight junctions also show dynamic behaviour, including migration within the junction and exchange in and out of the junctions. In addition, it is becoming clear that some tight junction proteins undergo continuous endocytosis and recycling back to the plasma membrane. Regulation of endocytic trafficking of junctional proteins may provide a way of rapidly remodelling junctions and will be the focus of this chapter.  相似文献   

8.
9.
Cadherin adhesion molecules function in close cooperation with the actin cytoskeleton. At the zonula adherens (ZA) of polarized epithelial cells, E-cadherin adhesion induces the cortical recruitment of many key cytoskeletal regulators, which act in a dynamic integrated system to regulate junctional integrity and cell-cell interactions. This capacity for the cytoskeleton to support the ZA carries the implication that regulators of the junctional cytoskeleton might also be targeted to perturb junctional integrity. In this report, we now provide evidence for this hypothesis. We show that hepatocyte growth factor (HGF), which is well-known to disrupt cell-cell interactions, acutely perturbs ZA integrity much more rapidly than generally appreciated. This is accompanied by significant loss of junctional F-actin, a process that reflects loss of filament anchorage at the junctions. We demonstrate that this involves uncoupling of the unconventional motor myosin VI from junctional E-cadherin, a novel effect of HGF that is mediated by intracellular calcium. We conclude that regulators of the junctional cytoskeleton are likely to be major targets for cadherin junctions to be acutely modulated in development and perturbed in disease.  相似文献   

10.
11.
Junctional adhesion molecule (JAM) is an integral membrane protein that has been reported to colocalize with the tight junction molecules occludin, ZO-1, and cingulin. However, evidence for the association of JAM with these molecules is missing. Transfection of Chinese hamster ovary cells with JAM (either alone or in combination with occludin) resulted in enhanced junctional localization of both endogenous ZO-1 and cotransfected occludin. Additionally, JAM was coprecipitated with ZO-1 in the detergent-insoluble fraction of Caco-2 epithelial cells. A putative PDZ-binding motif at the cytoplasmic carboxyl terminus of JAM was required for mediating the interaction of JAM with ZO-1, as assessed by in vitro binding and coprecipitation experiments. JAM was also coprecipitated with cingulin, another cytoplasmic component of tight junctions, and this association required the amino-terminal globular head of cingulin. Taken together, these data indicate that JAM is a component of the multiprotein complex of tight junctions, which may facilitate junction assembly.  相似文献   

12.
13.
Chitosan is a polycationic compound widely employed as dietary supplement and also present in pharmaceutical preparations. Although it has been approved for human consumption, its possible side effects have not been widely investigated and the available data in the literature are still controversial. Several polycationic substances have been shown to affect tight junction permeability in epithelial cell models in vitro. In this study we have compared the effects of chitosan and other polycations (polyethylenimine, poly-L-lysines of different molecular weights) on the integrity of tight junctions and of the actin cytoskeleton in the human intestinal Caco-2 cell line. We have measured trans-epithelial electrical resistance and paracellular passage of the extracellular marker inulin, and we have localized F-actin and tight junctional proteins (ZO1 and occludin) in cell monolayers treated with various concentrations of each polycation. Fluorescent poly-L-lysines were also employed to determine their association with the cell monolayer. Our results indicate that all polycations investigated are able to induce a reversible increase in tight junction permeability. This effect is concentration and energy dependent, affected by the extracellular concentration of divalent cations (calcium, magnesium and manganese) and it is associated with morphological changes in the F-actin cytoskeleton, as well as in the localization of tight junctional proteins. Chitosan, in particular, was the only cationic polymer that displayed an irreversible effect on tight junctions at the highest concentration tested (0.01%). These results indicate that oral ingestion of chitosan may have more widespread health effects by altering intestinal barrier function, thus allowing the entrance into the circulation of potentially toxic and/or allergenic substances.  相似文献   

14.
Basally located tight junctions between Sertoli cells in the postpubertal testis are the largest and most complex junctional complexes known. They form at puberty and are thought to be the major structural component of the "blood-testis" barrier. We have now examined the development of these structures in the immature mouse testis in conjunction with immunolocalization of the tight-junction-associated protein ZO-1 (zonula occludens 1). In testes from 5-day-old mice, tight junctional complexes are absent and ZO-1 is distributed generally over the apicolateral, but not basal, Sertoli cell membrane. As cytoskeletal and reticular elements characteristic of the mature junction are recruited to the developing junctions, between 7 and 14 days, ZO-1 becomes progressively restricted to tight junctional regions. Immunogold labeling of ZO-1 on Sertoli cell plasma membrane preparations revealed specific localization to the cytoplasmic surface of tight junctional regions. In the mature animal, ZO-1 is similarly associated with tight junctional complexes in the basal aspects of the epithelium. In addition, it is also localized to Sertoli cell ectoplasmic specializations adjacent to early elongating, but not late, spermatids just prior to sperm release. Although these structures are not tight junctions, they do have a similar cytoskeletal arrangement, suggesting that ZO-1 interacts with the submembrane cytoskeleton. These results show that, in the immature mouse testis, ZO-1 is present on the Sertoli cell plasma membrane in the absence of recognizable tight junctions. In the presence of tight junctions, however, ZO-1 is found only at the sites of junctional specializations associated with tight junctions and with elongating spermatids.  相似文献   

15.
Synapses of the central nervous system (CNS) are specialized cell-cell junctions that mediate intercellular signal transmission from one neuron to another. The directional nature of signal relay requires synaptic contacts to be morphologically asymmetric with distinct protein components, while changes in synaptic communication during neural network formation require synapses to be plastic. Synapse morphology and plasticity require a dynamic actin cytoskeleton. Classical cadherins, which are junctional proteins associated with the actin cytoskeleton, localize to synapses and regulate synaptic adhesion, stability and remodeling. The major intracellular components of cadherin junctions are the catenin proteins, and increasing evidence suggests that cadherin-catenin complexes modulate an array of synaptic processes. Here we review the role of catenins in regulating the development of pre- and postsynaptic compartments and function in synaptic plasticity, with particular focus on their role in regulating the actin cytoskeleton.  相似文献   

16.
This review is focused on the composition and organization of the junctional subsarcolemmal cytoskeleton of adult muscle fibers. The cytoskeleton of muscle fibers is organized in functionally distinct compartments and the subsarcolemmal cytoskeleton itself can be broadly divided into junctional (myotendinous junction, neuromuscular junction and costameres) and non-junctional domains. In junctional zones three different multimolecular cytoskeletal complexes coexist: the focal adhesion-type, the spectrin-based and the dystrophin vs utrophin-based membrane skeleton systems. These complexes extend over several levels, from intracytoplasmic to subsarcolemmal and transmembranous; their common feature is the anchorage of actin filaments emanating from the intracytoplasmic level. The different cytoskeletal proteins, their putative roles and their interactions with various signaling pathways are presented here in detail. The subsarcolemmal cytoskeleton complexes are thought to play distinct physiological roles (membrane stabilization, force transmission to extracellular matrix, ionic channel anchorage, etc) but their colocalization on the three sarcolemmal junctional domains strongly suggests interrelated or common functions.  相似文献   

17.
Small GTPases of the Rho family (RhoA, Rac1, and Cdc42) and the Ras family GTPase Rap1 are essential for the assembly and function of epithelial cell-cell junctions. Through their downstream effectors, small GTPases modulate junction formation and stability, primarily by orchestrating the polymerization and contractility of the actomyosin cytoskeleton. The major upstream regulators of small GTPases are guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Several GEFs and a few GAPs have been localized at epithelial junctions, and bind to specific junctional proteins. Thus, junctional proteins can regulate small GTPases at junctions, through their interactions with GEFs and GAPs. Here we review the current knowledge about the mechanisms of regulation of small GTPases by junctional proteins. Understanding these mechanisms will help to clarify at the molecular level how small GTPases control the morphogenesis and physiology of epithelial tissues, and how they are disregulated in disease.  相似文献   

18.
The functional characteristics of the tight junction protein ZO-3 were explored through exogenous expression of mutant protein constructs in MDCK cells. Expression of the amino-terminal, PSD95/dlg/ZO-1 domain-containing half of the molecule (NZO-3) delayed the assembly of both tight and adherens junctions induced by calcium switch treatment or brief exposure to the actin-disrupting drug cytochalasin D. Junction formation was monitored by transepithelial resistance measurements and localization of junction-specific proteins by immunofluorescence. The tight junction components ZO-1, ZO-2, endogenous ZO-3, and occludin were mislocalized during the early stages of tight junction assembly. Similarly, the adherens junction proteins E-cadherin and beta-catenin were also delayed in their recruitment to the cell membrane, and NZO-3 expression had striking effects on actin cytoskeleton dynamics. NZO-3 expression did not alter expression levels of ZO-1, ZO-2, endogenous ZO-3, occludin, or E-cadherin; however, the amount of Triton X-100-soluble, signaling-active beta-catenin was increased in NZO-3-expressing cells during junction assembly. In vitro binding experiments showed that ZO-1 and actin preferentially bind to NZO-3, whereas both NZO-3 and the carboxy-terminal half of the molecule (CZO-3) contain binding sites for occludin and cingulin. We hypothesize that NZO-3 exerts its dominant-negative effects via a mechanism involving the actin cytoskeleton, ZO-1, and/or beta-catenin.  相似文献   

19.
Vectorial transport in the thyroid epithelium requires an efficient barrier against passive paracellular flux, a role which is principally performed by the tight junction (zonula occludens). There is increasing evidence that tight junction integrity is determined by integral and peripheral membrane proteins which interact with the cell cytoskeleton. Although the contribution of the actin cytoskeleton to tight junction physiology has been intensively studied, less is known about possible interactions with microtubules. In the present study we used electrophysiological and immunohistochemical approaches to investigate the contribution of microtubules to the paracellular barrier in cultured thyroid cell monolayers which displayed a high transepithelial electrical resistance (6000-9000 ohm · cm2). Colchicine (1 μM) caused a progressive fall in electrical resistance to <10% of baseline after 6 h and depolarization of the transepithelial electrical potential difference consistent with a significant increase in paracellular permeability. The effect of colchicine on TER was not affected by agents which inhibit the major apical conductances of thyroid cells but was reversed upon removal of the drug. Immunofluorescent staining for tubulin combined with confocal laser scanning microscopy demonstrated that thyroid cells possessed a dense microtubule network extending throughout the cytoplasm which was destroyed by colchicine. Colchicine also produced changes in the localization of the tight junction-associated protein, ZO-1: its normally continuous junctional distribution was disrupted by striking discontinuities and the appearance of many fine strands which extended into the cytoplasm. A similar disruption in E-cadherin staining was also observed, but colchicine did not affect the distribution of vinculin associated with adherens junctions nor the integrity of the perijunctional actin ring. We conclude that microtubules are necessary for the functional and structural integrity of tight junctions in this electrically tight, transporting epithelium.  相似文献   

20.
The epithelial zonula adherens (ZA) is a specialized adhesive junction where actin dynamics and myosin-driven contractility coincide. The junctional cytoskeleton is enriched in myosin II, which generates contractile force to support junctional tension. It is also enriched in dynamic actin filaments, which are replenished by ongoing actin assembly. In this study we sought to pursue the relationship between actin assembly and junctional contractility. We demonstrate that WAVE2–Arp2/3 is a major nucleator of actin assembly at the ZA and likely acts in response to junctional Rac signaling. Furthermore, WAVE2–Arp2/3 is necessary for junctional integrity and contractile tension at the ZA. Maneuvers that disrupt the function of either WAVE2 or Arp2/3 reduced junctional tension and compromised the ability of cells to buffer side-to-side forces acting on the ZA. WAVE2–Arp2/3 disruption depleted junctions of both myosin IIA and IIB, suggesting that dynamic actin assembly may support junctional tension by facilitating the local recruitment of myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号