首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging‐tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis.  相似文献   

2.
Adventitious roots of rice (Oryza sativa) acclimatize to root-zone O(2) deficiency by increasing porosity, and induction of a barrier to radial O(2) loss (ROL) in basal zones, to enhance longitudinal O(2) diffusion towards the root tip. Changes in root-zone gas composition that might induce these acclimatizations, namely low O(2), elevated ethylene, ethylene-low O(2) interactions, and high CO(2), were evaluated in hydroponic experiments. Neither low O(2) (0 or 0.028 mol m(-3) O(2)), ethylene (0.2 or 2.0 microl l(-1)), or combinations of these treatments, induced the barrier to ROL. This lack of induction of the barrier to ROL was despite a positive response of aerenchyma formation to low O(2) and elevated ethylene. Carbon dioxide at 10 kPa had no effect on root porosity, the barrier to ROL, or on growth. Our findings that ethylene does not induce the barrier to ROL in roots of rice, even though it can enhance aerenchyma formation, shows that these two acclimatizations for improved root aeration are differentially regulated.  相似文献   

3.
Amount of oxygen released by bulrush (Scirpus validus) roots has been quantified based on the radial oxygen loss (ROL) exhibited by the roots, the number and the length of active lateral roots, and the field plant density. It was found that wetland bulrush contains two types of active lateral roots (showing ROL), viz., laterals of brown and white main roots. The two laterals have distinct oxygen release characteristics. Based on the dissolved oxygen (DO) microprofiles of brown and white laterals, the ROLs were found to be approximately 61 ng O2 cm(-2) root surface min(-1) and approximately 68 ng O2 cm(-2) root surface min(-1), respectively, at bulk 5-day biochemical oxygen demand (BOD5) of 76 mg L(-1). The respective average active root lengths of the brown and the white laterals were approximately 40 and approximately 1676 microm. Based on field and laboratory measurements, the average amount of oxygen released by bulrush was found to be 2.30 mg O2 m(-2) wetland surface d(-1); of this approximately 71% is from the white roots. The results of this study indicate that plants do not release enough oxygen to meet the total oxygen demand of bulk wastewater, and therefore, constructed wetlands should be designed as an anaerobic or an aerobic-anaerobic hybrid system rather than as an aerobic system. However, the results of this study should be viewed in the background of possible errors (including a reactor design flaw), which might have made the measured oxygen release significantly lower than what plant roots actually release. Further studies are needed to quantify wetland plant oxygen release based on micro-scale measurements.  相似文献   

4.
水稻根系通气组织与根系泌氧及根际硝化作用的关系   总被引:9,自引:0,他引:9  
李奕林 《生态学报》2012,32(7):2066-2074
通过根箱土培试验研究了不同产量籼稻品种中旱22(ZH,高产品种)及禾盛10号(HS,低产品种)苗期根系生长、通气组织发育、根系径向泌氧量(radial oxygen loss,ROL)以及根表和根际土壤硝化强度差异。结果表明,除水稻播种40 d时二者根数量和根干重无显著差异外,ZH根直径、根数量和根干重均显著高于HS,二者差异尤其表现在根系生物量差异。两个水稻品种在距根尖20 mm处均可见辐射状通气组织,ZH皮层薄壁细胞已经完全崩溃形成连接中柱和外皮层的纵向气腔,而HS皮层薄壁细胞未发生完全离解,但仍能观察到明显的连接中柱和外皮层的纵向气腔的形成。同时ZH外皮层厚壁细胞体积较小,排列紧密,细胞壁增厚程度大;而HS外皮层厚壁细胞体积相对较大,排列疏松,细胞壁增厚程度相对较小。表明高产品种通气组织发育比低产品种更加完善,表现为ZH根孔隙度(porosity of root,POR)显著高于HS,且高产品种对水稻根系ROL的屏蔽作用较低产品种更强,为根系提供更充足的氧气供应,促进根系生长。除了水稻播种后40 d时ZH和HS单根ROL无显著差异外(P<0.05),ZH单株、单位重量以及单根ROL均显著高于HS(P<0.01)。两个水稻品种硝化强度均表现为根际土壤显著高于根表土壤 (P<0.01),前者大约是后者的3-6倍。两个品种根表土壤硝化强度无显著差异,而ZH根际土壤硝化强度均显著高于HS。相关性分析结果表明水稻根际土壤硝化强度和整株水稻ROL呈极显著正相关关系(r=0.803,P<0.01),和水稻POR也呈现极显著正相关关系(r=0.808,P<0.01),同时和根系直径、数量和干重均呈极显著正相关关系(P<0.01)。而根表土壤硝化强度和以上指标均无相关关系。由于硝化作用是好氧过程,因此高产品种由于根系发达,通气组织发育好,相应ROL也较大,造成根际土壤氧气含量高,从而可能导致根际土壤硝化强度显著高于低产品种。  相似文献   

5.
A radial oxygen loss (ROL) barrier in roots of waterlogging‐tolerant plants promotes oxygen movement via aerenchyma to the root tip, and impedes soil phytotoxin entry. The molecular mechanism and genetic regulation of ROL barrier formation are largely unknown. Zea nicaraguensis, a waterlogging‐tolerant wild relative of maize (Zea mays ssp. mays), forms a tight ROL barrier in its roots when waterlogged. We used Z. nicaraguensis chromosome segment introgression lines (ILs) in maize (inbred line Mi29) to elucidate the chromosomal region involved in regulating root ROL barrier formation. A segment of the short‐arm of chromosome 3 of Z. nicaraguensis conferred ROL barrier formation in the genetic background of maize. This chromosome segment also decreased apoplastic solute permeability across the hypodermis/exodermis. However, the IL and maize were similar for suberin staining in the hypodermis/exodermis at 40 mm and further behind the root tip. Z. nicaraguensis contained suberin in the hypodermis/exodermis at 20 mm and lignin at the epidermis. The IL with ROL barrier, however, did not contain lignin in the epidermis. Discovery of the Z. nicaraguensis chromosomal region responsible for root ROL barrier formation has improved knowledge of this trait and is an important step towards improvement of waterlogging tolerance in maize.  相似文献   

6.
研究了香港4种非胎生红树植物榄李(Lumnitzeraracemosa(Jack.)Voigt.)、银叶树(Heritieralittoralis(Drgand.)Ait.)、海漆(Excoecaria agallocha L.)和老鼠簕(Acanthusilicifolius L.)的繁殖体特征和萌发技术,并分析了其在潮间带分带的决定因素.所有直接种植的新鲜榄李繁殖体均不能萌发,但经湿润贮藏35 d和50d的繁殖体能萌发,说明该物种具有种子休眠的特性.榄李萌发率随盐度升高而下降,盐度高于25则不能萌发.银叶树繁殖体果壳的去除可加速其萌发.海漆和老鼠簕的繁殖体分别在2 d和3 d开始萌根.在繁殖体萌发方面,老鼠簕的耐盐性比榄李强.4种非胎生红树植物对潮间带不稳定环境的适应方式有:(1)繁殖体的寿命较长,如榄李和银叶树;(2)萌根速度快,如海漆和老鼠簕;(3)具有沉性繁殖体,如榄李.繁殖体的悬浮性是决定这4种非胎生红树植物潮间带分带的最重要因素:榄李因具有沉性繁殖体而自然分布于最靠海的区域,而银叶树、海漆和老鼠簕因具有浮性繁殖体而更靠陆岸分布.对于繁殖体悬浮性相同的物种,萌根速度是影响潮间带分带的重要因素:完整的银叶树繁殖体需要108 d才能萌根,因而分布于最靠陆岸的区域,而海漆和老鼠簕因萌根速度快而在相对更靠海的区域分布.环境盐度、繁殖体大小、动物啃食和幼苗大小等因素则不能解释香港非胎生红树植物在潮间带的分带现象.  相似文献   

7.
The root anatomical features of eight mangrove species in Hong Kong were similar, with large aerenchymal lacunae in the cortex for efficient internal oxygen transfer and an outer barrier consisting of an epidermis and hypodermis to prevent oxygen loss. The spatial pattern of radial oxygen loss (ROL) was also comparable, with more oxygen lost from the tip than that from the basal and mature zones. However, the aerenchyma in the cortex, the barrier and the extent of ROL varied along the root and these variations were species-specific. The whole root of Avicennia marina (Forsk.) Vierh., Acanthus ilicifolius L., Aegiceras corniculatum (Linn.) Blanco, Kandelia obovata Sheue, Liu & Yong (previously known as Kandelia candel (L.) Druce) and Heriteria littoralis Dryand. ex W. Ait. had schizogenous aerenchyma, while the aerenchyma of Lumnitzera racemosa Willd. and Bruguiera gymnorrhiza (L.) Poir changed from schizogenous in the root tip to lysigenous in the other parts of the root. Excoecaria agallocha L. displayed the opposite pattern, from lysigenous in the root tip to schizogenous further up. Among the eight species, the roots of A. marina and A. ilicifolius had the largest areas of aerenchyma air spaces, but they also had the weakest barrier. On the other hand, H. littoralis had the least longitudinal oxygen transfer because of its smaller area of aerenchyma air spaces in its root. The tolerance of mangrove species to waterlogged soil followed the order of A. marina (most foreshore species) > A. ilicifolius > K. obovata > A. corniculatum > B. gymnorrhiza > E. agallocha > L. racemosa > H. littoralis (most landward species), which is related to their anatomical features of root cortex, epidermis and hypodermis.  相似文献   

8.
Root anatomy, radial oxygen loss (ROL), and tolerances to ferrous (Fe(2+)), sulphide (S(2-)), and zinc (Zn(2+)) ions were investigated in seedlings of eight species of mangrove, including three pioneer species, three rhizophoraceous and two landward semi-mangrove species. The results showed an interesting co-tolerance to Fe(2+), S(2-), and Zn(2+). The three rhizophoraceous species (Bruguiera gymnorrhiza, Kandelia obovata and Rhizophora stylosa), which possessed the thickest lignified exodermis and the 'tightest barrier' in ROL spatial pattern, consistently exhibited the highest tolerance to Fe(2+), S(2-), and Zn(2+). B. gymnorrhiza could directly reduce ROL by increasing lignification within the exodermis. Such an induced barrier to ROL is a probable defence response to prevent further invasion and spread of toxins within plants. The data also indicated that, in B. gymnorrhiza, Fe(2+) or S(2-), or both, induced a lignified exodermis that delayed the entry of Zn(2+) into the roots and thereby contributed to a higher tolerance to Zn(2+). This study provides new evidence of exclusive strategies of mangrove seedling roots in dealing with contaminations. The information is also important in the selection and cultivation of tolerant species for the bioremediation of contaminated waters or soils.  相似文献   

9.
The objective of this work was to determine whether radial oxygen loss (ROL) from roots of Typha domingensis and Cladium jamaicense creates an internal oxygen deficiency or, conversely, indicates adequate internal aeration and leakage of excess oxygen to the rhizosphere. Methylene blue in agar was used to visualize the pattern of ROL from roots, and oxidation of a titanium-citrate solution was used to quantify rates of oxygen leakage. Typha's roots had a higher porosity than Cladium's and responded to flooding treatment by increasing cortical air space, particularly near the root tips. A greater oxygen release, which occurred along the subapical root axis, and an increase in rhizosphere redox potential (E(h)) over time were associated with the well-developed aerenchyma system in Typha. Typha roots, regardless of oxygen release pattern, showed low or undetectable alcohol dehydrogenase (ADH) activity or ethanol concentrations, indicating that ROL did not cause internal deficiencies. Cladium roots also released oxygen, but this loss primarily occurred at the root tips and was accompanied by increased root ADH activity and ethanol concentrations. These results support the hypothesis that oxygen release by Cladium is accompanied by internal deficiencies of oxygen sufficient to stimulate alcoholic fermentation and helps explain Cladium's lesser flood tolerance in comparison with Typha.  相似文献   

10.
11.
BACKGROUND AND AIMS: Rain-fed lowland rice commonly encounters stresses from fluctuating water regimes and nutrient deficiency. Roots have to acquire both oxygen and nutrients under adverse conditions while also acclimating to changes in soil-water regime. This study assessed responses of rice roots to low phosphorus supply in aerated and stagnant nutrient solution. METHODS: Rice (Oryza sativa 'Amaroo') was grown in aerated solution with high P (200 micro m) for 14 d, then transferred to high or low (1.6 micro m) P supply in aerated or stagnant solution for up to 8 d. KEY RESULTS: After only 1 d in stagnant conditions, root radial oxygen loss (ROL) had decreased by 90 % in subapical zones, whereas near the tip ROL was maintained. After 4 d in stagnant conditions, maximum root length was 11 % less, and after 8 d, shoot growth was 25 % less, compared with plants in aerated solution. The plants in stagnant solution had up to 19 % more adventitious roots, 24 % greater root porosity and 26 % higher root/shoot ratio. Rice in low P supply had fewer tillers in both stagnant and aerated conditions. After 1-2 d in stagnant solution, relative P uptake declined, especially at low P supply. Aerated roots at low P supply maintained relative P uptake for 4 d, after which uptake decreased to the same levels as in stagnant solution. CONCLUSIONS: Roots responded rapidly to oxygen deficiency with decreased ROL in subapical zones within 1-2 d, indicating induction of a barrier to ROL, and these changes in ROL occurred at least 2 d before any changes in root morphology, porosity or anatomy were evident. Relative P uptake also decreased under oxygen deficiency, showing that a sudden decline in root-zone oxygen adversely affects P nutrition of rice.  相似文献   

12.
Nitrate (N), phosphate (P) or sulphate (S) deprivation causes aerenchyma formation in maize (Zea mays L.) nodal roots. The exact mechanisms that trigger the formation of aerenchyma under these circumstances are unclear. We have compared aerenchyma distribution across the nodal roots of first whorl (just emerging in 10-day-old seedlings), which were subject to S, N or P deprivation over a period of 10?days in connection with oxygen consumption, ATP concentration, cellulase and polygalacturonase activity in the whole root. The effect of deprivation on aerenchyma formation was examined using light and electron microscopy, along with in situ detection of calcium and of reactive oxygen species (ROS) by fluorescence microscopy. Aerenchyma was not found in the root base regardless of the deprivation. Programmed cell death (PCD) was observed near the root tip, either within the first two days (-N) or a few days later (-S, -P) of the treatment. Roots at day?6 under all three nutrient-deprived conditions showed signs of PCD 1?cm behind the cap, whereas only N-deprived root cells 0.5?cm behind the cap showed severe ultrastructural alterations, due to advanced PCD. The lower ATP concentration and the higher oxygen consumptions observed at day?2 in N-, P- and S-deprived roots compared to the control indicated that PCD may be triggered by perturbations in energy status of the root. The peaks of cellulase activity located between days?3 (-N) and 6 (-P), along with the respective alterations in polygalacturonase activity, indicated a coordination which preceded aerenchyma formation. ROS and calcium seemed to contribute to PCD initiation, with ROS possessing dual roles as signals and eliminators. All the examined parameters presented both common features and characteristic variations among the deprivations.  相似文献   

13.
The present report describes experiments in which the effects of growth in aerated and stagnant nutrient solutions on adventitious root porosities and patterns of radial O2 loss (ROL) from the roots of four genotypes of rice (Oryza sativa L.) were evaluated. The genotypes studied are usually cultivated in farming systems which differ markedly in their degree of soil waterlogging and flooding. Rice genotypes were found to differ in the constitutive porosity (% gas space) of their adventitious roots when grown in aerated solutions (lowest was 16%, highest was 30%), and the roots grown in stagnant conditions had porosities between 28% and 38%. ROL from the adventitious roots raised in aerated solution increased with distance behind the tip in three of the four genotypes; whereas for roots raised in stagnant solution, ROL decreased with distance behind the tip which is indicative of a high resistance to diffusion between the aerenchyma and external medium. For example, at 35 mm behind the root tip the ROL from roots of the 'deepwater' cultivar grown in stagnant conditions was 0.7% of the rate of its aerated roots, for the 'lowland' cultivar it was 5.6%, and for one of the 'upland' cultivars it was 43.6%. Thus, the barrier to ROL from the adventitious roots in three of the four genotypes was induced by growth in stagnant nutrient solution. A low rate of ROL from the basal zones of roots in an O2-free environment is of adaptative value since longitudinal diffusion of O2 to the root apex would be enhanced which, in turn, enables greater penetration of roots into anaerobic soils.  相似文献   

14.
Ranathunge K  Steudle E  Lafitte R 《Planta》2003,217(2):193-205
A new pressure-perfusion technique was used to measure hydraulic and osmotic properties of the outer part of roots (OPR) of 30-day-old rice plants (lowland cultivar: IR64, and upland cultivar: Azucena). The OPR comprised rhizodermis, exodermis, sclerenchyma and one cortical cell layer. The technique involved perfusion of aerenchyma of segments from two different root zones (20-50 mm and 50-100 mm from the tip) at precise rates using aerated nutrient solution. The hydraulic conductivity of the OPR (Lp(OPR)=1.2x10(-6) m s(-1) MPa(-1)) was larger by a factor of 30 than the overall hydraulic conductivity (Lp(r)=4x10(-8) m s(-1) MPa(-1)) as measured by pressure chamber and root pressure probe. Low reflection coefficients were obtained for mannitol and NaCl for the OPR (sigma(sOPR)=0.14 and 0.09, respectively). The diffusional water permeability ( P(dOPR)) estimated from isobaric flow of heavy water was smaller by three orders of magnitude than the hydraulic conductivity (Lp(OPR)/ P(fOPR)). Although detailed root anatomy showed well-defined Casparian bands and suberin lamellae in the exodermis, the findings strongly indicate a predominantly apoplastic water flow in the OPR. The Lp(OPR) of heat-killed root segments increased by a factor of only 2, which is in line with the conclusion of a dominating apoplastic water flow. The hydraulic resistance of the OPR was not limiting the passage of water across the root cylinder. Estimations of the hydraulic properties of aerenchyma suggested that the endodermis was rate-limiting the water flow, although the aerenchyma may contribute to the overall resistance. The resistance of the aerenchyma was relatively low, because mono-layered cortical septa crossing the aerenchyma ('spokes') short-circuited the air space between the stele and the OPR. Spokes form hydraulic bridges that act like wicks. Low diffusional water permeabilities of the OPR suggest that radial oxygen losses from aerenchyma to medium are also low. It is concluded that in rice roots, water uptake and oxygen retention are optimized in such a way that hydraulic water flow can be kept high in the presence of a low efflux of oxygen which is diffusional in nature.  相似文献   

15.
Metal (Pb, Zn and Fe2+) tolerances, root anatomy and profile of radial oxygen loss (ROL) along the root (i.e., spatial pattern of ROL) were studied in 10 emergent wetland plants. The species studied could be classified into three groups. Group I included Alternanthera philoxeroides, Beckmannia syzigachne, Oenanthe javanica and Polypogon fugax, with high ROL along the whole length of root (‘partial barrier’ to ROL). Group II included Cyperus flabelliformis, Cyperus malaccensis, Juncus effusus, Leersia hexandra and Panicum paludosum, ROL of which was remarkably high just behind the root apex, but decreased significantly at relatively basal regions (‘tight barrier’ to ROL). Group III consisted of only Neyraudia reynaudiana, with extremely low ROL along the length of root. The results indicated that metal tolerance in wetland plants was related to root anatomy and spatial pattern of ROL. Co-evolution of metal (Fe and Zn) tolerance and flood tolerance possibly developed in wetland plants since species showing a ‘tight barrier’ to ROL (a common trait of flood-tolerant species) in basal root zones had higher Fe and Zn tolerances than those showing a ‘partial barrier’. Root anatomy such as lignin and suberin deposition contributed to a ‘tight barrier’ in root and conferred to exclusion ability in tolerant species.  相似文献   

16.
洪水条件下湿地植物的生存策略   总被引:18,自引:1,他引:17  
洪水是自然界存在的一种普遍现象。湿地植物由于所处生境的特殊性,会经常受到周期性或永久性的洪水胁迫。在长期的适应进化过程中,湿地植物形成了一些特殊的生存策略,以适应水文条件的大幅度变化。主要的生存策略如下:1)生活史方面,植物可通过改变生长时间、繁殖方式、种子特征等避免洪水的直接伤害或利用洪水的流动起到传播扩散的作用;2)形态学特征方面,植物可通过调整根系形态、分布等将根系生长到氧气相对充足的土壤表层或形成不定根增强根系通气功能;3)解剖学方面,植物可通过改善组织孔隙度形成通气组织等改善空气传导到根系的"气体通道";4)生理生化方面,植物可通过增加碳水化合物含量以延长生存时间,释放出一些生长激素(乙烯等)以调节植物缺氧条件下的生理活动或形态、解剖方面的变化。在今后的研究中,不定根的形成机理、乙烯在通气组织形成中的作用及其过程、放射氧损失(ROL)的形成机理及其释放速率的调控等一些机理性的工作还需进一步加强。  相似文献   

17.
四种挺水植物生理生态特性和污水净化效果研究   总被引:3,自引:0,他引:3  
采用人工气候室水培系统以人工污水培养慈姑(Sagittaria trifolia)、花皇冠(Echinodorus berteroi)、菖蒲(Acorus calamus)和芦苇(Phragmites australis) 4种挺水植物,比较它们的根和地上部分生物量、根长、根寿命、根孔隙度、根径向泌氧量(ROL)、光合作用等生理生态特性及对总氮(TN)、总磷(TP)、化学需氧量(COD)的去除效果。结果表明,ROL与根孔隙度、光合速率、地上生物量呈显著正相关(P<0.05),与根长极显著正相关(P<0.01);TP的去除与光合速率、COD的去除与ROL显著正相关; TN的去除与生物量极显著正相关(P<0.01),但与根生物量和地上部分生物量的比值(根茎比)显著负相关(P<0.05)。慈姑和花皇冠拥有庞大生物量和发达的根系,根孔隙度、ROL和光合作用等生理指标较高,在水培系统中的污水净化效果接近甚至优于菖蒲和芦苇,是构建人工湿地的优良植物。  相似文献   

18.
This study investigated aerenchyma formation and function in adventitious roots of wheat (Triticum aestivum L.) when only a part of the root system was exposed to O2 deficiency. Two experimental systems were used: (1) plants in soil waterlogged at 200 mm below the surface; or (2) a nutrient solution system with only the apical region of a single root exposed to deoxygenated stagnant agar solution with the remainder of the root system in aerated nutrient solution. Porosity increased two‐ to three‐fold along the entire length of the adventitious roots that grew into the water‐saturated zone 200 mm below the soil surface, and also increased in roots that grew in the aerobic soil above the water‐saturated zone. Likewise, adventitious roots with only the tips growing into deoxygenated stagnant agar solution developed aerenchyma along the entire main axis. Measurements of radial O2 loss (ROL), taken using root‐sleeving O2 electrodes, showed this aerenchyma was functional in conducting O2. The ROL measured near tips of intact roots in deoxygenated stagnant agar solution, while the basal part of the root remained in aerated solution, was sustained when the atmosphere around the shoot was replaced by N2. This illustrates the importance of O2 diffusion into the basal regions of roots within an aerobic zone, and the subsequent longitudinal movement of O2 within the aerenchyma, to supply O2 to the tip growing in an O2 deficient zone.  相似文献   

19.
A Re-examination of the Functional Significance of Aerenchyma   总被引:1,自引:0,他引:1  
Model roots of known length and internal porosity were assayed for ROL (radial oxygen loss) by the cylindrical Pt electrode technique and a series of curves were obtained which express the inter-relationships between ROL and diffusion path length over a wide range of internal porosity levels. The results indicate that internal porosity can exert considerable control on the amount of oxygen lost from roots, the more so the narrower the root. Because radial oxygen loss is necessary for survival and competitiveness, doubt is therefore cast on the currently held view that aerenchyma formation furnishes the wetland plant with an oxygen diffusion pathway excessive to its requirements. The results also suggest that cellular partitions and diaphragms in wetland species may impede gas transport far less than has hitherto been thought.  相似文献   

20.
? Wide hybridization of waterlogging-tolerant Hordeum marinum with wheat (Triticum aestivum) to produce an amphiploid might be one approach to improve waterlogging tolerance in wheat. ? Growth, root aerenchyma and porosity, and radial oxygen loss (ROL) along roots were measured in four H. marinum-wheat amphiploids and their parents (four accessions of H. marinum and Chinese Spring wheat) in aerated or stagnant nutrient solution. A soil experiment was also conducted. ? Hordeum marinum maintained shoot dry mass in stagnant nutrient solution, whereas the growth of wheat was markedly reduced (40% of aerated control). Two of the four amphiploids were more tolerant than wheat (shoot dry masses of 59-72% of aerated controls). The porosity of adventitious roots when in stagnant solution was higher in H. marinum (19-25%) and the four amphiploids (20-24%) than in wheat (16%). In stagnant solution, adventitious roots of H. marinum formed a strong ROL barrier in basal zones, whereas, in wheat, the barrier was weak. Two amphiploids formed a strong ROL barrier and two formed a moderate barrier when in stagnant solution. ? This study demonstrates the transfer of higher root porosity and a barrier to ROL from H. marinum to wheat through wide hybridization and the production of H. marinum-wheat amphiploids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号