首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleocapsid protein (NCP) from Mason-Pfizer monkey virus (MPMV) contains two evolutionary invariant Cys-X2-Cys-X4-His-X4-Cys retroviral-type zinc finger structures, where the Cys and His residues provide ligands to a tetrahedrally coordinated Zn(II) ion. The N-terminal zinc finger (F1) of NCP from MPMV contains an immediately contiguous Cys in the -1 position relative to the start of this conserved motif: Cys-Cys-X2-Cys-X4-His-X4-Cys. Metal complexes of 18-amino acid peptides which model the native zinc finger sequence, SER-Cys-X2-Cys-X4-His-X4-Cys (F1_SC), and non-native Cys-SER-X2-Cys-X4-His-X4-Cys (F1_CS) and SER-SER-X2-Cys-X4-His-X4-Cys (F1_SS) sequences have been spectroscopically characterized and compared to the native two-zinc-finger protein fragment, MPMV NCP 21-80. All Co(II)-substituted peptide complexes adopt tetrahedral ligand geometries and have S-MCo(II) ligand-to-metal charge-transfer (LMCT) transition intensities consistent with three Co(II)-S bonds for F1_SC and F1_CS. The non-native F1_CS peptide binds Co(II) with KCo=1.5᎒6 M-1, comparable to that of the native complex, and 걄-fold tighter than F1_SS. Like the Co(II) derivative, the absorption spectrum of Ni(II)-substituted NCP 21-80 is most consistent with tetrahedral Ni(II) complexes with multiple thiolate donors. In contrast, Ni(II) complexes of F1_SC and F1_CS exhibit a single absorption band in the 400-550 nm region ()겨-300 M-1 cm-1), distinct in the two complexes, assignable to a degenerate d-d transition envelope characteristic of non-native square-planar coordination geometry, and an intense LMCT transition in the UV ()255ᄾ,000 M-1 cm-1). Cd(II) complexes have intense absorption in the UV (5max=233 nm), with absolute intensities consistent with 񬩈 M-1 cm-1 per Cd(II)-S bond. 113Cd NMR spectroscopy of 113Cd MPMV NCP gives '=649 ppm, consistent with S3N coordination. Co(II) and Cd(II) complexes of non-native F1_CS peptides are more sensitive to oxidation by O2, relative to F1_SC, suggestive of a higher lability in the non-native chelate. The implications of these findings for the evolutionary conservation of this motif are discussed.  相似文献   

2.
Tryptophan hydroxylase (TPH) catalyses the rate-limiting step in the biosynthesis of serotonin. In vertebrates, the homologous genes tph1 and tph2 encode two different enzymes with distinct patterns of expression, enzyme kinetics and regulation. Variants of TPH2 have recently reported to be associated with reduced serotonin production and behavioural alterations in man and mice. We have produced the human forms of these enzymes in Esherichia coli and in human embryonic kidney cell lines (HEK293) and examined the effects of mutations on their heterologous expression levels, solubility, thermal stability, secondary structure, and catalytic properties. Pure human TPH2 P449R (corresponds to mouse P447R) had comparable catalytic activity (V(max)) and solubility relative to the wild type, but had decreased thermal stability; whereas human TPH2 R441H had decreased activity, solubility and stability. Thus, we consider the variations in kinetic values between wild-type and TPH2 mutants to be of secondary importance to their effects on protein stability and solubility. These findings provide potential molecular explanations for disorders related to the central serotonergic system, such as depression or suicidal behaviour.  相似文献   

3.
4.
5.
Non-glucosylated, non-methylated phage T2 DNA was methylated in vitro with partially purified wild-type (dam+) or mutant (damh) T2 DNA adenine methylase. The radioactively labeled methyladenine-containing DNA was enzymatically degraded and the resulting oligonucleotides were separated according to chain length by DEAE-cellulose chromatography. Following “fingerprinting” by two-dimensional electrophoresis, we determined the sequence for various di-, tri- and tetranucleotides containing radioactive N6-methyldeoxyadenosine. From this analysis we conclude that both T2 dam+ and T2 damh contain the sequence 5′…G-mA -Py…3′.  相似文献   

6.
Neuroglobin, recently discovered in the brain and in the retina of vertebrates, belongs to the class of hexacoordinate globins, in which the distal histidine coordinates the iron center in both the Fe(II) and Fe(III) forms. As for most other hexacoordinate globins, the physiological function of neuroglobin is still unclear, but seems to be related to neuronal survival following acute hypoxia. In this study, we have addressed the question whether human neuroglobin could act as a scavenger of toxic species, such as nitrogen monoxide, peroxynitrite, and hydrogen peroxide, which are generated at high levels in the brain during hypoxia; we have also investigated the kinetics of the reactions of its Fe(III) (metNGB) and Fe(II)NO forms with several reagents. Binding of cyanide or NO* to metNGB follows bi-exponential kinetics, showing the existence of two different protein conformations. In the presence of excess NO*, metNGB is converted into NGBFe(II)NO by reductive nitrosylation, in analogy to the reactions of NO* with metmyoglobin and methemoglobin. The Fe(II)NO form of neuroglobin is oxidized to metNGB by peroxynitrite and dioxygen, two reactions that also take place in hemoglobin, albeit at lower rates. In contrast to myoglobin and hemoglobin, metNGB unexpectedly does not generate the cytotoxic ferryl form of the protein upon addition of either peroxynitrite or hydrogen peroxide. Taken together, our data indicate that human neuroglobin may be an efficient scavenger of reactive oxidizing species and thus may play a role in the cellular defense against oxidative stress.  相似文献   

7.
Carnosine complexes with copper(II) ions were studied with magnetic resonance techniques over a wide range of ligand to metal ratios at various pH values. Water proton relaxation rates increased with decreasing carnosine to copper ratios until a molar ratio of 48 was reached. Over the ratio range of 48–2 carnosine molecules per copper ion, the relaxation rate decreased so that in the 2:1 carnosine-copper(II) complex, the water-copper(II) distance was estimated to be 1.92 Å. Proton NMR studies revealed the broadening of imidazole proton lines at high mole ratios followed by other histidyl protons as the ratio decreased. The β-alanyl methylene protons were the last to be broadened by the addition of copper(II) ions. Carbon to copper(II) distances were determined for the carnosine to copper mole ratios of 500:1 and 5000:1. EPR spectra obtained at 93°K revealed the probable existence of four carnosine imidazoles as the sole coordinated ligands to copper(II) at high dipeptide-to-metal ratios (>10). At mole ratios below four, nuclear hyperfine lines characteristic of both monomeric and dimeric carnosine-copper(II) forms were observed. These results reveal that imidazole from carnosine is the sole ligand contributed to copper(II) for coordination over the pH range 5 to 7 at high carnosine to copper(II) ratios  相似文献   

8.
Mononuclear non-heme Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases comprise a large family of enzymes that utilize an Fe(IV)-oxo intermediate to initiate diverse oxidative transformations with important biological roles. Here, four of the major types of Fe(II)/2OG-dependent reactions are detailed: hydroxylation, halogenation, ring formation, and desaturation. In addition, an atypical epimerization reaction is described. Studies identifying several key intermediates in catalysis are concisely summarized, and the proposed mechanisms are explained. In addition, a variety of other transformations catalyzed by selected family members are briefly described to further highlight the chemical versatility of these enzymes.  相似文献   

9.
The Escherichia coli DNA repair enzyme AlkB belongs to the Fe(II)/2-oxoglutarate-dependent dioxygenase family. It removes methyl groups from 1-methyl adenine (1-meA) and 3-methyl cytosine (3-meC) lesions present in single-stranded DNA by oxidative decarboxylation. In the current article, we describe an in vitro assay that permits rapid detection of AlkB activity. To achieve this, we generated methylated oligonucleotide using methyl methanesulfonate and then monitored DNA repair using a methylation-sensitive restriction enzyme and novel agarose gel electrophoresis system capable of resolving small oligonucleotides. Our approach overcomes several drawbacks of NAD+-dependent formaldehyde dehydrogenase-coupled assay and radioisotope-based assay for determining AlkB DNA repair activity.  相似文献   

10.
The solid-state structures of 6-(1-methylbenzimidazol-2-yl)-1H-pyridin-2-one (HL) and the copper(II) complex [Cu(L)2(OH2)]·2H2O (1) are established by X-ray crystallography and also by means of physicochemical and spectroscopic methods. The molecules of HL form a self-complementary head-to-tail hydrogen-bonded dimer through C-H?N and C-H?O contacts to give an infinite 1D chain. The copper(II) complex (1) is five-coordinate with distorted trigonal-bipyramidal (TBP) geometry of the N4O donor atoms. The electronic and EPR data are in agreement with the X-ray structure of 1, showing that HL coordinates to copper(II) centre as a mono-anionic ligand through deprotonated pyridone N atom and the tertiary benzimidazole nitrogen atom to form a neutral complex in which the water molecule occupies the fifth position. The 1D water tape, T4(2)7(2)6(2)7(2) is anchored to the host through hydrogen bonds between coordinated water molecule [O(3w)] as acting double H-donor, pyridone carbonyl groups [O(2) and O(1)] as double H-acceptor and the lattice water molecules [O(4w) and O(5w)] as double H-donor and single H-acceptor).  相似文献   

11.
Previous studies demonstrated that structural perturbation of the alpha(1) domain of apolipoprotein B (apoB) blocked the initiation of lipoprotein assembly. We explored the hypothesis that this domain may interact with the inner leaflet of the endoplasmic reticulum membrane in a manner that may nucleate microsomal triglyceride transfer protein-dependent lipid sequestration. ApoB-17 (amino-terminal 17% of apoB), which contains most of the alpha(1) domain, was expressed stably in rat hepatoma cells and recovered from medium in lipid-poor form. On incubation with phospholipid vesicles composed of 1-myristol-2-myristoyl-sn-glycero-3-phosphocholine or 1-palmitoyl-2-oleoyl-sn-gylycero-3-phosphocholine, apoB-17 underwent vesicle binding and was recovered in the d < 1.25 g/ml gradient fraction. To determine whether vesicle binding is disrupted by the same structural perturbations that block lipoprotein assembly in vivo, apoB-17 was subjected to partial and complete chemical reduction. Although normally a soluble peptide, mild reduction of apoB-17 caused its precipitation, suggesting that hydrophobic, solvent-inaccessible domains within the alpha(1) domain of apoB are stabilized by intramolecular disulfide bonds. In contrast to apoB-17 chemically reduced in vitro, forms of apoB-17 bearing pairwise cysteine-to-serine substitutions were recovered in soluble form from transiently transfected COS-1 cell extracts. Although individual disruption of disulfide bond 2 or 4 in apoB-28 and apoB-50 was previously shown to block lipoprotein assembly in vivo, these alterations had no impact on the ability of apoB-17 to bind to phospholipid vesicles in vitro or on its capacity to form recombinant lipoprotein particles. These results suggest that while the vesicle/lipid-binding property of the alpha(1) domain may reflect an essential role required for the initiation of lipoprotein formation, some other aspect of alpha(1) domain function is perturbed by disruption of native disulfide bonds. -- DeLozier, J. A., J. S. Parks, and G. S. Shelness. Vesicle-binding properties of wild-type and cysteine mutant forms of alpha(1) domain of apolipoprotein B. J. Lipid Res. 2001. 42: 399--406.  相似文献   

12.
Interactions of inosine derivatives with copper(II) were studied in the pH range 1.4–13 in 50% H2O-50% DMSO solution. The distinct pH dependence of the optical spectra observed in copper(II)-inosine complexes are correlated to their respective EPR changes as a function of pH. It was concluded that a simple 1:1 complex of copper(II)-inosine is formed in the pH range 1.4–5.0 and bis complexes are present in the pH 5.0–6.2 region solutions of inosine and Cu(II). From pH 6.2 to 7.8 a diamagnetic, hydroxybridged complex dominates. At pH 7.8–9.2 an insoluble, oxybridged species is formed in addition to the soluble paramagnetic Cu(NI)4 complex. Starting from pH 9.1 the N-polymeric complex is formed which is stable up to pH 12.5, and above pH 12.5 the only species is the Cu(ribose)2 complex.  相似文献   

13.
By use of 31P NMR, the transmembrane pH gradient (delta pH) and the intracellular levels of phosphorylated metabolites were measured in aerobic suspensions of wild-type Escherichia coli cells in the presence and absence of the adenosinetriphosphatase (ATPase) inhibitor dicyclohexylcarbodiimide (DCCD); the same parameters were also determined in E. coli mutants deficient in ATPase activity under both anaerobic and aerobic conditions. A method is described by which dense suspensions of E. coli cells (approximately 3 X 10(11) cells/mL) were oxygenated so that steady-state O2 levels in the suspensions were far greater than the Km for O2 consumption. Under these conditions, in wild-type MRE600 cells, the intracellular concentrations of PI, NTP, and NDP were measured to be 3.0 +/- 1.5, 8 +/- 1, and 1.2 +/- 1 mM, respectively, while the intracellular pH was approximately 7.5 over the external pH range studied (6 to approximately 7.0). Upon treatment with DCCD, the intracellular NTP level was drastically reduced and intracellular Pi concentration increased in respiring wild-type cells; in the same cells, however, DCCD did not affect the intracellular pH and the delta pH. During respiration in the presence of lactate, ATPase- cells established a delta pH but failed to synthesize any detectable levels of NTP. Conversely, ATPase- cells accumulated high levels of NTP but did not generate a delta pH during glycolysis under anaerobic conditions. These results are in complete agreement with the generally accepted chemiosmotic hypothesis. 31P NMR data on intact ATPase- NR70 cells were in agreement with the previously proposed [Rosen, B. P., Brey, R., & Hasan, S. (1978) J. Bacteriol. 134, 1030] existence of a proton leak in this strain which is sealed by DCCD or by spontaneous mutation into strain NR71. However, the NMR data also indicated that other major differences exist between NR71 and NR70 cells.  相似文献   

14.
The interaction of Cu(II) with human lactoferrin has been studied as a function of pH, using electronic and electron spin resonance spectroscopy. Specific Cu(II) binding, with bicarbonate as the co-anion, occurs over the pH range 6 to 9. In the presence of a fiftyfold molar excess of oxalate, a monocopper(II) lactoferrin oxalate complex forms when the Cu(II) to protein is 1:1. If this ratio is increased to 2:1, a hybrid complex forms, in which the second copper utilizes bicarbonate as the co-anion, thus demonstrating, as for serum transferrin, a difference in the anion binding sites. The quenching of the intrinsic fluorescence of apolactoferrin is significantly less in the presence of oxalate than bicarbonate. The interaction of Cu(II) with apolactoferrin in the presence of the malonate, glycolate, thioglycolate, glycinate, and ethylenediaminetetraacetate ions has been examined.  相似文献   

15.
Apoconalbumin binds Mn(II) at two sites with association constants of K1 = 7 (+/- 1) X 10(4) and K2 = 0.4 (+/- 0.25) X 10(4) M-1. The binding is tighter in the presence of excess bicarbonate resulting in K1 = 1.8 (+/- 0.2) X 10(5) and K2 = 3 (+/- 2) X 10(4) M-1. The electron paramagnetic resonance spectrum (at both 9 and 35 GHz) of Mn(II) bound at the tight site reveals a rhombic distortion (lambda = E/D approximately equal to 0.25-0.31) in the protein ligand environment of the mental ion. An evaluation of the 1/pT1p, paramagnetic contribution to the longitudinal relaxation rate of solvent protons with Mn(II)-, Mn(III)-, and Fe(III)-derivatives of conalbumin revealed that the mental ion in each site of conalbumin is accessible to one water molecule. For Mn(II)-conalbumin and Mn(III)-conalbumin species, inner coordination sphere protons are rapidly exchanging with the bulk solvent, while slow exchange conditions prevail for Fe(III)-conalbumin.  相似文献   

16.
Hypoxia-inducible factors (HIF-1/HIF-2) govern the expression of critical genes for cellular adaptation to low oxygen tensions. We have previously reported that the intracellular level of phosphatidic acid (PA) rises in response to hypoxia (1% O(2)). In this report, we have explored whether components of the canonical HIF/von Hippel-Lindau (VHL) pathway are involved in the induction of PA. We found that hypoxia induces PA in a cell line constitutively expressing a stable version of HIF-1alpha. PA induction was also found in HIF-1alpha- and 2alpha-negative CHO Ka13 cells, as well as in HIF-beta-negative HepaC4 cells. These data indicate that HIF activity is neither sufficient nor necessary for oxygen-dependent PA accumulation. PA generation was also detected in cells deficient for the tumor suppressor VHL, indicating that the presence of VHL was not required for the induction of PA. Here we show that PA accumulation also occurs at moderate hypoxia (5% O(2)), although to a lesser extent to that seen at 1% O(2), revealing that PA is induced at the same hypoxia range required to activate HIF-1. Prolyl hydroxylases (PHD) and asparaginyl hydroxylase (FIH) belong to the iron (II) and 2-oxoglutarate-dependent dioxygenase family and have been proposed as oxygen sensors involved in the regulation of HIFs. Chemical inhibition of these activities by treatment with iron chelators or 2-oxoglutarate analogs also results in a marked PA accumulation similar to that observed in hypoxia. Together these data show that PA accumulation in response to hypoxia is both HIF-1/2- and VHL-independent and indicate a role of iron (II)-2-oxoglutarate-dependent dioxygenases in the oxygen-sensing mechanisms involved in hypoxia-driven phospholipid regulation.  相似文献   

17.
The Cu(II) complex formation equilibria of D- glucosamine were studied in aqueous solution by potentiometric and spectroscopic (ESR, CD, absorption spectra) techniques. All data agree that two major species are formed in the pH region 6–9 involving two D-glucosamine ligand molecules bound to the cupric ion via NH2(CuL2) or NH2 and O? (CuH?2L2). In the latter case deprotonated hydroxyls were found to be very effective coordination sites for Cu(II) giving rise to chelate complexes. On the contrary, no complex formation was observed for the Cu(II) N-acetyl-D-glucosamine system.  相似文献   

18.
The effect of replacement of the highly conserved Lys45 residue in pig myoglobin (Mb) with His, Ser, Glu, and Arg has been investigated. Rate constants/M-1 s-1 at 25 degrees C and pH 8.0, I = 0.100 M (NaCl), for the oxidation of deoxyMb with [Fe(CN)6]3- have been determined, and are for wild-type Lys45 (2.83 x 10(6)), His45 (1.02 x 10(6)), Ser45 (1.12 x 10(6)), Glu45 (0.87 x 10(6)), and Arg45 (3.06 x 10(6)). It is concluded that charge on the residue at position 45 has only a mild effect on reactivity, and that this is unlikely to be the site for electron transfer.  相似文献   

19.
Bis (difluoroboron - α - furilglyoximato) nickel (II), C20H12O8N4B2F4Ni, was prepared by cyclization of its hydrogen-bonded precursor with BF3·OEt2. The compound crystallizes in the space group P21/c with a = 11.162(2), b = 5.569(2), c = 19.527(3) Å, β = 100.08(1)°, U = 1195.1(3) Å3, and Z = 2. The structure was refined to an R value of 0.033 using 2371 unique reflections collected with a CAD4-SDP diffractometer system. Unlike the corresponding planar macrocyclic as well as hydrogen-bonded dimethylglyoximates, the title compound neither dimerizes not exhibits columnar stacked structure. The 14-member macrocycle is planar except the B atoms, and no metal-metal interactions are observed in this compound. The complexation and cyclization reactions were investigated using spectral data. The structure is compared with other macrocyclic complexes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号