首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: Naphthenic acids (NAs) are naturally occurring, linear and cyclic carboxylic surfactants associated with the acidic fraction of petroleum. NAs account for most of the acute aquatic toxicity of oil sands process-affected water (OSPW). The toxicity of OSPW can be reduced by microbial degradation. The aim of this research was to determine the extent of NA degradation by sediment microbial communities exposed to varying amounts of OSPW. METHODS AND RESULTS: Eleven wetlands, both natural and process-affected, and one tailings settling pond in Northern Alberta were studied. The natural wetlands and process-affected sites fell into two distinct groups based on their water chemistry. The extent of degradation of a 14C-labelled monocyclic NA surrogate [14C-cyclohexane carboxylic acid (CCA)] was relatively uniform in all sediments (approximately 30%) after 14 days. In contrast, degradation of a bicyclic NA surrogate [14C-decahydronaphthoic acid (DHNA)] was significantly lower in non process-affected sediments. Enrichment cultures, obtained from an active tailings settling pond, using commercially available NAs as the sole carbon source, resulted in the isolation of a co-culture containing Pseudomonas putida and Pseudomonas fluorescens. Quantitative GC-MS analysis showed that the co-culture removed >95% of the commercial NAs, and partially degraded the process NAs from OSPW with a resulting NA profile similar to that from 'aged wetlands'. CONCLUSIONS: Exposure to NAs induced and/or selected micro-organisms capable of more effectively degrading bicyclic NAs. Native Pseudomonas spp. extensively degraded fresh, commercial NA. The recalcitrant NAs resembled those found in process-affected wetlands. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest that it may be possible to manipulate the existing environmental conditions to select for a microbial community exhibiting higher rates of NA degradation. This will have significant impact on the design of artificial wetlands for water treatment.  相似文献   

2.
Common reed (Phragmites australis) and narrow-leaved cattail (Typha angustifolia L.) are two plant species used widely in artificial wetlands constructed to treat wastewater. In this study, the community structure and diversity of root-associated bacteria of common reed and narrow-leaved cattail growing in the Beijing Cuihu Wetland, China, were investigated using 16S rDNA library and PCR–denaturing gradient gel electrophoresis methods. Root-associated bacterial diversity was higher in common reed than in narrow-leaved cattail. In both plant species, the dominant root-associated bacterial species were Alpha, Beta and Gamma Proteobacteria, including the genera Aeromonas, Hydrogenophaga, Ideonella, Uliginosibacterium and Vogesella. Acidobacteria, Actinobacteria, Nitrospirae and Spirochaetes were only found in the roots of common reed. Comparing the root-associated bacterial communities of reed and cattail in our system, many more species of bacteria related involved in the total nitrogen cycle were observed in reed versus cattail, while species involved in total phosphorus and organic matter removal were mainly found in cattail. Although we cannot determine their nutrient removal capacity separately, differences in the root-associated bacterial communities may be an important factor contributing to the differing water purification effects mediated by T. angustifolia and P. australis wetlands. Thus, further work describing the ecosystem functions of these bacterial species is needed, in order to fully understand how effective common reed- and narrow-leaved cattail-dominated wetlands are for phytoremediation.  相似文献   

3.
Exploiting the potential of bacteria in phytoremediation for the removal of organic and inorganic pollutants from soils and (ground)water holds great promise. Besides bacteria, mycorrhizal fungi and free-living saprotrophs are well known for their strong degradative capacities and plant growth promotion effects, which makes them of high interest for use in different bioremediation strategies. To further increase the efficiency and successes of phytoremediation, interactions between plants and their associated microorganisms, both bacteria and fungi, should be further investigated, in addition to the close interactions between bacteria and fungi. Benefitting from an increased understanding of microbial community structure and assembly allows us to better understand how the holobiont can be modified to improve pollutant degradation and plant growth. In this review, we present an overview of insights in plant-bacteria-fungi interactions and the opportunities of exploiting these tripartite interactions to enhance the effectiveness of phytoremediation of organic pollutants.  相似文献   

4.
Upward migration of plants to barren subnival areas is occurring worldwide due to raising ambient temperatures and glacial recession. In summer 2012, the presence of six vascular plants, growing in a single patch, was recorded at an unprecedented elevation of 6150 m.a.s.l. close to the summit of Mount Shukule II in the Western Himalayas (Ladakh, India). Whilst showing multiple signs of stress, all plants have managed to establish stable growth and persist for several years. To learn about the role of microbes in the process of plant upward migration, we analysed the root-associated microbial community of the plants (three individuals from each) using microscopy and tagged amplicon sequencing. No mycorrhizae were found on the roots, implying they are of little importance to the establishment and early growth of the plants. However, all roots were associated with a complex bacterial community, with richness and diversity estimates similar or even higher than the surrounding bare soil. Both soil and root-associated communities were dominated by members of the orders Sphingomonadales and Sphingobacteriales, which are typical for hot desert soils, but were different from communities of temperate subnival soils and typical rhizosphere communities. Despite taxonomic similarity on the order level, the plants harboured a unique set of highly dominant operational taxonomic units which were not found in the bare soil. These bacteria have been likely transported with the dispersing seeds and became part of the root-associated community following germination. The results indicate that developing soils act not only as a source of inoculation to plant roots but also possibly as a sink for plant-associated bacteria.  相似文献   

5.
This paper reviews strategies for manipulating plants and their root-associated microorganisms to improve plant health and productivity. Some strategies directly target plant processes that impact on growth, while others are based on our knowledge of interactions among the components of the rhizosphere (roots, microorganisms and soil). For instance, plants can be engineered to modify the rhizosphere pH or to release compounds that improve nutrient availability, protect against biotic and abiotic stresses, or encourage the proliferation of beneficial microorganisms. Rhizobacteria that promote plant growth have been engineered to interfere with the synthesis of stress-induced hormones such as ethylene, which retards root growth, and to produce antibiotics and lytic enzymes active against soilborne root pathogens. Rhizosphere engineering also can involve the selection by plants of beneficial microbial populations. For example, some crop species or cultivars select for and support populations of antibiotic-producing strains that play a major role in soils naturally suppressive to soil-borne fungal pathogens. The fitness of root-associated bacterial communities also can be enhanced by soil amendment, a process that has allowed the selection of bacterial consortia that can interfere with bacterial pathogens. Plants also can be engineered specifically to influence their associated bacteria, as exemplified by quorum quenching strategies that suppress the virulence of pathogens of the genus Pectobacterium. New molecular tools and powerful biotechnological advances will continue to provide a more complete knowledge of the complex chemical and biological interactions that occur in the rhizosphere, ensuring that strategies to engineer the rhizosphere are safe, beneficial to productivity, and substantially improve the sustainability of agricultural systems.  相似文献   

6.
叶际微生物研究进展   总被引:5,自引:0,他引:5  
植物的叶际是一个复杂的生态系统,微生物的生存环境条件严苛。其可被利用的营养成分较少,温湿度波动大。此外,较强的紫外线辐射对于叶际微生物的生存也有很大影响。但是植物叶际却有着丰富的微生物多样性,其中还有许多有益细菌和真菌。它们通过和植物寄主的互作,改善着叶际微生物的栖居环境;其对植物病原体的拮抗亦可提高植物的抗病性。植物叶际的微生物还可以产生激素以促进植物生长,还有一些微生物可以利用农药等污染有机物作为营养物质,在污染物的环境生物修复方面显示巨大的潜力。此外,叶际微生物作为一种生态学指标在生态稳定与环境安全评价中开始发挥显著的作用。  相似文献   

7.
The composition of the rhizosphere microbiome is a result of interactions between plant roots, soil, and environmental conditions. The impact of genetic variation in plant species on the composition of the root-associated microbiota remains poorly understood. This study assessed the abundances and structures of nitrogen-transforming (ammonia-oxidizing) archaea and bacteria as well as nitrogen-fixing bacteria driven by genetic modification of their maize host plants. The data show that significant changes in the abundances (revealed by quantitative PCR) of ammonia-oxidizing bacterial and archaeal communities occurred as a result of the maize host being genetically modified. In contrast, the structures of the total communities (determined by PCR-denaturing gradient gel electrophoresis) were mainly driven by factors such as soil type and season and not by plant genotype. Thus, the abundances of ammonia-oxidizing bacterial and archaeal communities but not structures of those communities were revealed to be responsive to changes in maize genotype, allowing the suggestion that community abundances should be explored as candidate bioindicators for monitoring the possible impacts of cultivation of genetically modified plants.  相似文献   

8.
石油集输系统中微生物群落结构研究   总被引:1,自引:1,他引:0  
采用16SrRNA基因克隆一变性梯度凝胶电泳分析方法研究了石油集输系统原油和油田产水中的微生物群落结构。变性梯度凝胶电泳图谱显示:油田产水中微生物群落远比原油中的菌群丰富。所有的油田水样和原油样本中都存在与Ochrobactrum sp.和Stenotrophomonas sp.相关的细菌;原油样本中检测出与Burkholderia sp.、Brevundimonas sp.和Propionibacterium sp.相关的细菌,而这些细菌在油田水样中未检出;在油田水样中检出与Hippea sp.、Acidovorax sp.、Arcobacter sp.、Pseudomonas sp.、Thiomicrospira sp.、Brevibacterium sp.、Tissierella sp.和Peptostreptococcus sp.相关的细菌,而这些细菌在原油样本中未检出。用古细菌特异性引物进行检测发现在油田水样中存在与Methanomicrobials和Methanosarcinales相关的产甲烷菌,而这些细菌在原油样本中未检出。在石油集输过程中,油田水样和原油中微生物群落的相似性分别为83.3%和88.2%,说明微生物群落结构较为稳定。  相似文献   

9.
Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454‐pyrosequencing to analyse the soil microbial community composition in a long‐term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se.  相似文献   

10.
Plant survival under conditions of low oxygen availability is an important aspect of the phytoremediation of oily compounds, as one of the problems associated with environmental contamination by such compounds is anaerobic stress. Since Inga spp. presents adaptation mechanisms to conditions of partial and total submersion, it would be useful in the phytoremediation of petroleum wastes. The aim of this work was to verify the efficiency of a phytoremediation system using1 Inga uruguensis Hook. and Arn. to degrade organic compounds such as semisolid petroleum waste (SSPW) and used cooking oil (UCO). A greenhouse study was conducted with plants grown in pots containing 3.1 kg substrate (soil + organic waste) that contained 10.15% SSPW or 5.56% UCO. Plants were grown for 84 days, and the system was evaluated by measuring changes in the oil and grease content (OGC), plant development, and abundance of microorganisms in substrate. Treatment of the SSPW with Inga sp. yielded a 40.7% reduction in OGC, whereas there was no significant change in the OGC in unplanted systems. Conversely, there was no significant plant effect on the OGC in the UCO-treated systems. Furthermore, we found evidence that the plant effect is associated with microbial community changes. Considering the high dose of SSPW and the high rate of degradation within an experiment of short duration, it was concluded that Inga uruguensis Hook. and Arn. holds potential for the phytoremediation of recalcitrant oily residues in soil.  相似文献   

11.
The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use. In this study, willows were planted in contaminated and non-contaminated soils in a greenhouse, and the active microbial communities and the expression of functional genes in the rhizosphere and bulk soil were compared. Ion Torrent sequencing of 16S rRNA and Illumina sequencing of mRNA were performed. Genes related to carbon and amino-acid uptake and utilization were upregulated in the willow rhizosphere, providing indirect evidence of the compositional content of the root exudates. Related to this increased nutrient input, several microbial taxa showed a significant increase in activity in the rhizosphere. The extent of the rhizosphere stimulation varied markedly with soil contamination levels. The combined selective pressure of contaminants and rhizosphere resulted in higher expression of genes related to competition (antibiotic resistance and biofilm formation) in the contaminated rhizosphere. Genes related to hydrocarbon degradation were generally more expressed in contaminated soils, but the exact complement of genes induced was different for bulk and rhizosphere soils. Together, these results provide an unprecedented view of microbial gene expression in the plant rhizosphere during phytoremediation.  相似文献   

12.
A semi-industrial bioscrubber was developed to treat a complex mixture of VOCs: oxygenated, aromatic and chlorinated compounds. In order to optimize the VOCs mass transfer, an original washing agent made up of water and cutting oil was tested, and the impact of this washing agent on bioscrubbing performances was investigated. The results obtained with a laboratory unit show that the addition of oil strongly increases the quantity of transferred aromatics. For these compounds, the apparent mass transfer coefficient k(L)a is lower than with water alone. In term of bioscrubbing performances, comparison of the results obtained with the water-oil mixture and water alone showed that the removal efficiency for aromatics is enhanced: from 12% to 36% (applied load of 852 g VOCs m(-3)h(-1)); the elimination of chlorinated compounds is slightly improved. The addition of oil does not seem to lead to any dysfunction of the microbial communities that metabolize the transferred compounds.  相似文献   

13.
The diversity of endophytic bacteria found in association with poplar was investigated as part of a larger study to assess the possibility and practicality of using endophytic bacteria to enhance in situ phytoremediation. Endophytic bacteria were isolated from the root, stem and leaf of two cultivars of poplar tree growing on a site contaminated with BTEX compounds. They were further characterised genotypically by comparative sequence analysis of partial 16S rRNA genes and BOX-PCR genomic DNA fingerprinting, and phenotypically by their tolerance to a range of target pollutants, heavy metals and antibiotics. One hundred and 21 stable, morphologically distinct isolates were obtained, belonging to 21 genera, although six isolates could not be identified with confidence to a genus. The endophytic bacteria exhibited marked spatial compartmentalisation within the plant, suggesting there are likely to be species-specific and non-specific associations between bacteria and plants. A number of isolates demonstrated the ability to degrade BTEX compounds or to grow in the presence of TCE. This study demonstrates that within the diverse bacterial communities found in poplar several endophytic strains are present that have the potential to enhance phytoremediation strategies.  相似文献   

14.
Phytoremediation in Wetland Ecosystems: Progress,Problems, and Potential   总被引:1,自引:0,他引:1  
Assessing the phytoremediation potential of wetlands is complex due to variable conditions of hydrology, soil/sediment types, plant species diversity, growing season, and water chemistry. Conclusions about long-term phytoremediation potential are further complicated by the process of ecological succession in wetlands. This review of wetlands phytoremediation addresses the role of wetland plants in reducing contaminant loads in water and sediments, including metals; volatile organic compounds (VOC), pesticides, and other organohalogens; TNT and other explosives; and petroleum hydrocarbons and additives. The review focuses on natural wetland conditions and does not attempt to review constructed wetland technologies. Physico-chemical properties of wetlands provide many positive attributes for remediating contaminants. The expansive rhizosphere of wetland herbaceous shrub and tree species provides an enriched culture zone for microbes involved in degradation. Redox conditions in most wetland soil/sediment zones enhance degradation pathways requiring reducing conditions. However, heterogeneity complicates generalizations within and between systems. Wetland phytoremediation studies have mainly involved laboratory microcosm and mesocosm technologies, with the exception of planted poplar communities. Fewer large-scale field studies have addressed remediation actions by natural wetland communities. Laboratory findings are encouraging with regards to phytoextraction and degradation by rhizosphere and plant tissue enzymes. However, the next phase in advancing the acceptance of phytoremediation as a regulatory alternative must demonstrate sustained contaminant removal by intact natural wetland ecosystems.  相似文献   

15.
The paper presents the results of the long-term investigation of microbial communities in the technogenically vulnerable mouth riverine and lacustrine ecosystems of Lake Baikal. The structural and functional parameters of the microbial communities were analyzed from the standpoint of developing destructive processes. The analysis showed that the total number of microorganisms (TNM), the number of saprophytic bacteria (NSB), and bacterial production (BP) were greater in the river-mouth water than in the near-mouth lake water. In the offshore direction, TNM and NSB decreased by a factor of 1.5 to 2, and BP decreased by a factor of 4 to 7. Based on TNM, NSB, and BP data, we classified the Lake Baikal rivers with respect to the degree of the impact of human activities on them. The degrading capability of the riverine microbial communities was found to be such that they degrade daily from tenths of a percent to 3.5% of the total amount of organic compounds polluted the river waters.  相似文献   

16.
Abstract

Microbe-assisted phytoremediation depends on competent root-associated microorganisms that enhance remediation efficiency of organic compounds. Endophytic bacteria are a key element of the root microbiome and may assist plant degradation of contaminants. The aim of this study was to investigate the application of four hydrocarbon-degrading endophytic strains previously isolated from an oil sands reclamation area. Strains EA1-17 (Stenotrophomonas sp.), EA2-30 (Flavobacterium sp.), EA4-40 (Pantoea sp.), and EA6-5 (Pseudomonas sp.) were inoculated in white sweet clover growing on soils amended with diesel at 5,000, 10,000, and 20,000?mg·kg?1. Our results indicate that plant growth inhibition caused by diesel fuel toxicity was overcome in inoculated plants, which showed significantly higher plant biomass. Analysis of soil F2 and F3 hydrocarbon fractions also revealed that these soils were remediated by inoculated plants when diesel was applied at 10,000?mg·kg?1 and 20,000?mg·kg?1. In addition, quantification of hydrocarbon-degrading genes suggests that all bacterial strains successfully colonized sweet clover plants. Overall, the endophytic strain EA6-5 (Pseudomonas sp.), which harbored hydrocarbon-degrading genes, was the most effective candidate in phytoremediation experiments and could be a strategy to increase plant tolerance and hydrocarbon degradation in contaminated (e.g., diesel fuel) soils.  相似文献   

17.
Nitrogen fixation (nitrogenase activity, NA) of a microbial mat and a living stromatolite from Cuatro Cienegas, Mexico, was examined over spring, summer, and winter of 2004. The goal of the study was to characterize the diazotrophic community through molecular analysis of the nifH gene and using inhibitors of sulfate reduction and oxygenic and anoxygenic photosynthesis. We also evaluated the role of ultraviolet radiation on the diazotrophic activity of the microbial communities. Both microbial communities showed patterns of NA with maximum rates during the day that decreased significantly with 3-3,4-dichlorophenyl-1′,1′-dimethylurea, suggesting the potential importance of heterocystous cyanobacteria. There is also evidence of NA by sulfur-reducing bacteria in both microbial communities suggested by the negative effect exerted by the addition of sodium molybdate. Elimination of infrared and ultraviolet radiation had no effect on NA. Both microbial communities had nifH sequences that related to group I, including cyanobacteria and purple sulfur and nonsulfur bacteria, as well as group II nitrogenases, including sulfur reducing and green sulfur bacteria.  相似文献   

18.
The paper presents the results of the long-term investigation of microbial communities in the technogenically vulnerable mouth riverine and lacustrine ecosystems of Lake Baikal. The structural and functional parameters of the microbial communities were analyzed from the standpoint of developing destructive processes. The analysis showed that the total number of microorganisms (TNM), the number of saprophytic bacteria (NSB), and bacterial production (BP) were greater in the river-mouth water than in the near-mouth lake water. In the offshore direction, TNM and NSB decreased by a factor of 1.5 to 2, and BP decreased by a factor of 4 to 7. Based on TNM, NSB, and BP data, we classified the Lake Baikal rivers with respect to the degree of the impact of human activities on them. The degrading capability of the riverine microbial communities was found to be such that they degrade daily from tenths of a percent to 3.5% of the total amount of organic compounds polluting the river waters.  相似文献   

19.
Cyanobacteria may be important components of wastewater treatment plants’ (WWTP) biological treatment, reaching levels of 100% of the total phytoplankton density in some systems. The occurrence of cyanobacteria and their associated toxins in these systems present a risk to the aquatic environments and to public health, changing drastically the ecology of microbial communities and associated organisms. Many studies reveal that cyanotoxins, namely microcystins may not act as antibacterial compounds but they might have negative impacts on protozoans, inhibiting their growing and respiration rates and leading to changes in cellular morphology, decreasing consequently the treatment efficacy in WWTP. On the other side, flagellates and ciliates may ingest some cyanobacteria species while the formation of colonies by these prokaryotes may be seen as a defense mechanism against predation. Problems regarding the occurrence of cyanobacteria in WWTP are not limited to toxin production. Other cyanobacterial secondary metabolites may act as antibacterial compounds leading to the disruption of bacterial communities that biologically convert organic materials in WWTP being fundamental to the efficacy of the process. Studies reveal that the potential antibacterial capacity differs according to cyanobacteria specie and it seems to be more effective in Gram (+) bacteria. Thus, to understand the effects of cyanobacterial communities in the efficiency of the waste water treatment it will be necessary to unravel the complex interactions between cyanobacterial populations, bacteria, and protozoa in WWTP in situ studies.  相似文献   

20.
Treatment of oil sands process-affected water (OSPW) using biodegradation has the potential to be an environmentally sound approach for tailings water reclamation. This process is both economical and efficient, however, the recalcitrance of some OSPW constituents, such as naphthenic acids (NAs), require the pre-treatment of raw OSPW to improve its biodegradability. This study evaluated the treatment of OSPW using ozonation followed by fluidized bed biofilm reactor (FBBR) using granular activated carbon (GAC). Different organic and hydraulic loading rates were applied to investigate the performance of the bioreactor over 120 days. It was shown that ozonation improved the adsorption capacity of GAC for OSPW and improved biodegradation by reducing NAs cyclicity. Bioreactor treatment efficiencies were dependent on the organic loading rate (OLR), and to a lesser degree, the hydraulic loading rate (HLR). The combined ozonation, GAC adsorption, and biodegradation process removed 62 % of chemical oxygen demand (COD), 88 % of acid-extractable fraction (AEF) and 99.9 % of NAs under optimized operational conditions. Compared with a planktonic bacterial community in raw and ozonated OSPW, more diverse microbial communities were found in biofilms colonized on the surface of GAC after 120 days, with various carbon degraders found in the bioreactor including Burkholderia multivorans, Polaromonas jejuensis and Roseomonas sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号