首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Siderophores are small-molecule iron chelators that many bacteria synthesize and secrete in order to survive in iron-depleted environments. Biosynthesis of enterobactin, the Escherichia coli catecholate siderophore, requires adenylation of 2,3-dihydroxybenzoic acid (2,3-DHB) by the cytoplasmic enzyme EntE. The DHB-AMP product is then transferred to the active site of holo-EntB subsequent to formation of an EntE-EntB complex. Here we investigate the binding of 2,3-DHB to EntE and how DHB binding affects EntE-EntB interaction. We overexpressed and purified recombinant forms of EntE and EntB with N-terminal hexahistidine tags (H6-EntE and H6-EntB). Isothermal titration calorimetry showed that 2,3-DHB binds to H6-EntE with a 1:1 stoichiometry and a Kd of 7.4 μM. Fluorescence spectra revealed enhanced 2,3-DHB emission at 440 nm (λex = 280 nm) when bound to H6-EntE due to fluorescence resonance energy transfer (FRET) between EntE intrinsic fluorophore donors and bound 2,3-DHB acceptor. A FRET signal was not observed when H6-EntE was mixed with either 2,5-dihydroxybenzoic acid or 3,5-dihydroxybenzoic acid. The H6-EntE-2,3-DHB FRET signal was quenched by H6-EntB in a concentration-dependent manner. From these data, we were able to determine the EC50 of EntE-EntB interaction to be approximately 1.5 μM. We also found by fluorescence and CD measurements that H6-EntB can bind 2,3-DHB, resulting in conformational changes in the protein. Additional alterations in H6-EntB near-UV and far-UV CD spectra were observed upon mixture with H6-EntE and 2,3-DHB, suggesting that further conformational rearrangements occur in EntB upon interaction with substrate-loaded EntE. We also found that H6-EntB as a bait protein pulled down a higher concentration of chromosomally expressed EntE in the presence of exogenous 2,3-DHB. Taken together, our results show that binding of 2,3-DHB to EntE and EntB primes these proteins for efficient complexation, thus facilitating direct channeling of the siderophore precursor 2,3-DHB-AMP.  相似文献   

2.
The enzyme 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase (2,3-diDHB dehydrogenase, hereafter Ent A), the product of the enterobactin biosynthetic gene entA, catalyzes the NAD(+)-dependent oxidation of the dihydroaromatic substrate 2,3-dihydro-2,3-dihydroxybenzoate (2,3-diDHB) to the aromatic catecholic product 2,3-dihydroxybenzoate (2,3-DHB). The catechol 2,3-DHB is one of the key siderophore units of enterobactin, a potent iron chelator secreted by Escherichia coli. To probe the reaction mechanism of this oxidation, a variety of 2,3-diDHB analogues were synthesized and tested as substrates. Specifically, we set out to elucidate both the regio- and stereospecificity of alcohol oxidation as well as the stereochemistry of NAD+ reduction. Of those analogues tested, only those with a C3-hydroxyl group (but not a C2-hydroxyl group) were oxidized to the corresponding ketone products. Reversibility of the Ent A catalyzed reaction was demonstrated with the corresponding NADH-dependent reduction of 3-ketocyclohexane- and cyclohexene-1-carboxylates but not the 2-keto compounds. These results establish that Ent A functions as an alcohol dehydrogenase to specifically oxidize the C3-hydroxyl group of 2,3-diDHB to produce the corresponding 2-hydroxy-3-oxo-4,6-cyclohexadiene-1-carboxylate (Scheme II) as a transient species that undergoes rapid aromatization to give 2,3-DHB. Stereospecificity of the C3 allylic alcohol group oxidation was confirmed to be 3R in a 1R,3R dihydro substrate, 3, and hydride transfer occurs to the si face of enzyme-bound NAD+.  相似文献   

3.
The entC and entA genes, coding for the enzymes isochorismate synthase and 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase, respectively, were subcloned behind the T7 promoter in the expression plasmid pGEM3Z. Their protein products were overproduced and partially purified for in vitro analysis of the conversion of chorismate to isochorismate. Whereas previous genetic experiments suggested that the EntA enzyme has a role in this conversion, this study clearly indicates that EntC alone catalyzes the reaction. Addition of EntA had no effect on isochorismate synthase activity. As a result, the mutation (previously designated entC401) in strain AN191 was characterized by nucleotide sequence analysis. The lesion is a single base substitution in the entA gene, resulting in a glutamic acid-for-glycine substitution at the penultimate amino acid (residue 247) of the EntA enzyme. The mutant protein was partially purified and shown to be devoid of 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase activity, whereas the entC gene product from strain AN191 exhibited normal isochorismate synthase function. These results conflict with the earlier characterization of the entC401 mutation in a different genetic background. The data presented herein establish that the EntA protein does not contribute to isochorismate synthase activity and that the mutant strain that led to this suggestion harbors a defective allele of entA rather than entC.  相似文献   

4.
5.
Mutants of Escherichia coli K-12 unable to synthesize the iron-sequestering compound, enterochelin, from 2,3-dihydroxybenzoate have been isolated and divided into three classes on the basis of tests for enzymatic complementation. The genes affected (designated entD, entE, and entF) have been mapped by cotransduction and are located at about minute 14 on the E. coli genome. They were found to be closely linked to other genes (entA, entB, and entC) concerned with enterochelin biosynthesis and a gene (fep) concerned with the uptake of the iron-enterochelin complex. No detectable diffusible intermediate in the formation of enterochelin from 2,3-dihydroxybenzoate was formed by cell extracts of mutants carrying mutations in the entD, entE, or entF genes.  相似文献   

6.
Anaerobic enrichment cultures with 2,3-dihydroxybenzoate as sole source of energy and organic carbon yielded slow-growing cultures of fermenting bacteria. A culture derived from a marine inoculum, strain Pe23DHB, consisted of two morphotypes: spirilloid, highly motile bacteria (the predominant type), and very few long, rod-shaped bacteria. The culture was able to grow by decarboxylation of 2,3-dihydroxybenzoate to catechol. The decarboxylating activity was localized mainly in the cytosol; addition of avidin or of sodium salts had no effect on the decarboxylating activity in cell-free extracts. These results suggest that strain Pe23DHB did not conserve energy by a membrane-bound biotin-containing decarboxylase, creating a Na+-gradient across the cytoplasmic membrane. The energy conservation mechanism remains unknown at present. Received: 16 April 1997 / Accepted: 9 May 1997  相似文献   

7.
8.
2,3-Dihydroxybenzoic acid has been shown to be oxidized via the 3-oxoadipate pathway in the leaves of Tecoma stans. The formation of 2-carboxy-cis,cis-muconic acid, a muconolactone, 3-oxoadipic acid and carbon dioxide during its metabolism has been demonstrated using an extract of Tecoma leaves. The first reaction of the pathway, viz., the conversion of 2,3-dihydroxybenzoate to 2-carboxy-cis,cis-muconic acid has been shown to be catalysed by an enzyme designated as 2,3-dihydroxybenzoate 2,3-oxygenase. The enzyme has been partially purified and a few of its properties studied. The enzyme is very labile with a half-life of 3--4 h. It is maximally active with 2,3-dihydroxybenzoate as the substrate and does not exhibit any activity with catechol, 4-methyl catechol, 3,4-dihydroxybenzoic acid, etc. However, 2,3-dihydroxy-p-toluate and 2,3-dihydroxy-p-cumate are also oxidized by the enzyme by about 38% and 28% respectively, compared to 2,3-dihydroxybenzoate. Sulfhydryl reagents inhibit the enzyme reaction and the inhibition can be prevented by preincubation of the enzyme with the substrate. Substrate also affords protection to the enzyme against thermal inactivation. Sulfhydryl compounds strongly inhibit the reaction and the inhibition cannot be prevented by preincubation of the enzyme with its substrates. Data on the effect of metal ions as well as metal chelating agents suggest that copper is the metal cofactor of the enzyme. Evidence is presented which suggests that iron may not be participating in the overall catalytic mechanism.  相似文献   

9.
10.
2,3-Dihydroxybenzohydroxamoyl adenylate (I) was prepared as a potential product analog inhibitor of EntE (EC# 2.7.7.58), a 2,3-dihydroxybenzoate AMP ligase from Escherichia coli that is required for the biosynthesis of enterobactin. This compound, obtained by the aqueous reaction of imidazole-activated adenosine 5'-phosphate and 2,3-dihydroxybenzohydroxamic acid, is a competitive inhibitor with a Ki value of 4.5 x 10(-9)M. Deletion of the catecholic 3-OH group of (I), in compound (II), reduced inhibitory activity by a factor of 3.5, whereas, removal of both the 3-OH and 2-OH groups, in (III), reduced inhibitory activity by a factor of approximately 2000. Acetohydroxamoyl adenylate (IV), in which the entire catechol moiety of (I) is replaced by a hydrogen atom, gave 相似文献   

11.
Trichosporon cutaneum degraded L-tryptophan by a reaction sequence that included L-kynurenine, anthranilate, 2,3-dihydroxybenzoate, catechol, and beta-ketoadipate as catabolites. All of the enzymes of the sequence were induced by both L-tryptophan and salicylate, and those for oxidizing kynurenine and its catabolites were induced by anthranilate but not by benzoate; induction was not coordinate. Molecular weights of 66,100 and 36,500 were determined, respectively, for purified 2,3-dihydroxybenzoate decarboxylase and its single subunit. Substrates for this enzyme were restricted to benzoic acids substituted with hydroxyl groups at C-2 and C-3; no added coenzyme was required for activity. Partially purified anthranilate hydroxylase (deaminating) catalyzed the incorporation of one atom of 18O, derived from either 18O2 or H2(18)O, into 2,3-dihydroxybenzoic acid.  相似文献   

12.
Keating TA  Marshall CG  Walsh CT 《Biochemistry》2000,39(50):15513-15521
The Vibrio cholerae siderophore vibriobactin is biosynthesized from three molecules of 2,3-dihydroxybenzoate (DHB), two molecules of L-threonine, and one of norspermidine. Of the four genes positively implicated in vibriobactin biosynthesis, we have here expressed, purified, and assayed the products of three: vibE, vibB, and vibH. All three are homologous to nonribosomal peptide synthetase (NRPS) domains: VibE is a 2,3-dihydroxybenzoate-adenosyl monophosphate ligase, VibB is a bifunctional isochorismate lyase-aryl carrier protein (ArCP), and VibH is a novel amide synthase that represents a free-standing condensation (C) domain. VibE and VibB are homologous to EntE and EntB from Escherichia coli enterobactin synthetase; VibE activates DHB as the acyl adenylate and then transfers it to the free thiol of the phosphopantetheine arm of VibB's ArCP domain. VibH then condenses this DHB thioester (the donor) with the small molecule norspermidine (the acceptor), forming N(1)-(2, 3-dihydroxybenzoyl)norspermidine (DHB-NSPD) with a k(cat) of 600 min(-1) and a K(m) for acyl-VibB of 0.88 microM and for norspermidine of 1.5 mM. Exclusive monoacylation of a primary amine of norspermidine was observed. VibH also tolerates DHB-acylated EntB and 1,7-diaminoheptane, octylamine, and hexylamine as substrates, albeit at lowered catalytic efficiencies. DHB-NSPD possesses one of three acylations required for mature vibriobactin, and its formation confirms VibH's role in vibriobactin biosynthesis. VibH is a unique NRPS condensation domain that acts upon an upstream carrier-protein-bound donor and a downstream amine, turning over a soluble amide product, in contrast to an archetypal NRPS-embedded C domain that condenses two carrier protein thioesters.  相似文献   

13.
Mutans of Pseudomonas testosteroni were isolated for their inability to grow on m-hydroxybenzoate as sole carbon source. These mutants hydroxylated m-hydroxybenzoate for form 2,3-dihydroxybenzoate in high yeilds. The bioconversion described in this report represents the first reported example of 3-hydroxybenzoate 2-hydroxylase activity.  相似文献   

14.
A nonoxidative decarboxylase, 2,6-dihydroxybenzoate decarboxylase, was found in Agrobacterium tumefaciens IAM12048. The enzyme activity was induced specifically by 2,6-dihydroxybenzoate. The purified enzyme was a homotetramer of identical 38 kDa subunits. The purified decarboxylase catalyzed the nonoxidative decarboxylation of 2,6-dihydroxybenzoate and 2,3-dihydroxybenzoate without requiring any cofactors. In the presence of KHCO3, the enzyme also catalyzed the regioselective carboxylation of 1,3-dihydroxybenzene into 2,6-dihydroxybenzoate at a molar conversion ratio of 30%.  相似文献   

15.
Z He  J Wiegel 《Journal of bacteriology》1996,178(12):3539-3543
A 3,4-dihydroxybenzoate decarboxylase (EC 4.1.1.63) from Clostridium hydroxybenzoicum JW/Z-1T was purified and partially characterized. The estimated molecular mass of the enzyme was 270 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a single band of 57 kDa, suggesting that the enzyme consists of five identical subunits. The temperature and pH optima were 50 degrees C and pH 7.0, respectively. The Arrhenius energy for decarboxylation of 3,4-dihydroxybenzoate was 32.5 kJ . mol(-1) for the temperature range from 22 to 50 degrees C. The Km and kcat for 3,4-dihydroxybenzoate were 0.6 mM and 5.4 x 10(3) min(-1), respectively, at pH 7.0 and 25 degrees C. The enzyme optimally catalyzed the reverse reaction, that is, the carboxylation of catechol to 3,4-dihydroxybenzoate, at pH 7.0. The enzyme did not decarboxylate 2-hydroxybenzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, 2,3-dihydroxybenzoate, 2,4-dihydroxybenzoate, 2,5-dihydroxybenzoate, 2,3,4-trihydroxybenzoate, 3,4,5-trihydroxybenzoate, 3-F-4-hydroxybenzoate, or vanillate. The decarboxylase activity was inhibited by 25 and 20%, respectively, by 2,3,4- and 3,4,5-trihydroxybenzoate. Thiamine PPi and pyridoxal 5'-phosphate did not stimulate and hydroxylamine and sodium borohydride did not inhibit the enzyme activity, indicating that the 3,4-dihydroxybenzoate decarboxylase is not a thiamine PPi-, pyridoxal 5'-phosphate-, or pyruvoyl-dependent enzyme.  相似文献   

16.
We found a bacterium, Pandoraea sp. 12B-2, of which whole cells catalyzed not only the decarboxylation of 2,6-dihydroxybenzoate but also the regioselective carboxylation of 1,3-dihydroxybenzene to 2,6-dihydroxybenzoate. The whole cells of Pandoraea sp. 12B-2 also catalyzed the regioselective carboxylation of phenol and 1,2-dihydroxybenzene to 4-hydroxybenzoate and 2,3-dihydroxybenzoate, respectively. The molar conversion ratio of the carboxylation reaction depended on the concentration of KHCO3 in the reaction mixture. Only 5 or 48 % of 1,3-dihydroxybenzene added was converted into 2,6-dihydroxybenzoate in the presence of 0.1 M or 3 M KHCO3, respectively. The addition of acetone to the reaction mixture increased the initial rate of the carboxylation reaction, but the final molar conversion yield reached almost the same value. When the efficient production of 2,6-dihydroxybenzoate was optimized using the whole cells of Pandoraea sp. 12B-2, the productivity of 2,6-dihydroxybenzoate topped out at 1.43 M, which was the highest value so far reported. No formation of any other products was observed after the carboxylation reaction.  相似文献   

17.
The denitrifying bacterium Thauera aromatica strain AR-1 grows anaerobically with protocatechuate (3,4-dihydroxybenzoate (DHB)) as sole energy and carbon source. This bacterium harbors two distinct pathways for degradation of aromatic compounds, the benzoyl-coenzyme A (CoA) pathway for benzoate degradation and the hydroxyhydroquinone (HHQ) pathway for degradation of 3,5-DHB. In order to elucidate whether protocatechuate is degraded via the benzoyl-CoA or the HHQ pathway, induction experiments were carried out. Dense suspensions of cells grown on protocatechuate or benzoate readily degraded benzoate and protocatechuate but not 3,5-DHB. Dense suspensions of 3,5-DHB-grown cells degraded 3,4- and 3,5-DHB at similar rates, but benzoate was not degraded. 3,5-DHB hydroxylating activity was found only in cells grown with this substrate. HHQ dehydrogenase activity was found in extracts of cells grown with 3,5-DHB and at a low rate also in protocatechuate-grown cells, but not in extracts of cells grown with benzoate. Activities of protocatechuyl-CoA synthetase and protocatechuyl-CoA reductase leading to 3-hydroxybenzoyl-CoA were found in extracts of cells grown with protocatechuate. There was no repression of the HHQ pathway by the presence of protocatechuate, unlike by degradation of benzoate. We conclude that protocatechuate is not degraded via the HHQ pathway because there was no evidence of a hydroxylation reaction involved in this process. Instead, our results strongly suggest that protocatechuate is degraded via a pathway which connects to the benzoyl-CoA route of degradation.  相似文献   

18.
To study the role of (pro)collagen synthesis in the differentiation of rat L6 skeletal myoblasts, a specific inhibitor of collagen synthesis, ethyl-3,4-dihydroxybenzoate (DHB), was utilized. It is shown that DHB reversibly inhibits both morphological and biochemical differentiation of myoblasts, if it is added to the culture medium before the cell alignment stage. The inhibition is alleviated partially by ascorbate, which along with alpha-ketoglutarate serves as cofactor for the enzyme, prolyl hydroxylase. DHB drastically decreases the secretion of procollagen despite an increase in the levels of the mRNA for pro alpha 1(I) and pro alpha 2(I) chains. Probably, the procollagen chains produced in the presence of DHB, being underhydroxylated, are unable to fold into triple helices and are consequently degraded in situ. Along with the inhibition of procollagen synthesis, DHB also decreases markedly the production of a collagen-binding glycoprotein (gp46) present in the ER. The results suggest that procollagen production and/or processing is needed as an early event in the differentiation pathway of myoblasts.  相似文献   

19.
Comamonas acidovorans NBA-10 was previously shown to degrade 4-nitrobenzoate via 4-hydroxylaminobenzoate and 3,4-dihydroxybenzoate. Washed cells, grown on a mixture of 4-nitrobenzoate and ethanol, stoichiometrically produced ammonium and 3,4-dihydroxybenzoate from 4-nitrobenzoate under anaerobic conditions provided ethanol was present. In cell extracts 4-hydroxylaminobenzoate was degraded to ammonium and 3,4-dihydroxybenzoate, but this activity was lost upon dialysis. No requirement for a cofactor was found, but rather reduced incubation conditions were necessary to restore enzyme activity. The 4-hydroxylamino-degrading enzyme was purified and the role of this novel type of enzyme in the degradation of nitroaromatic compounds is discussed.Abbreviation 4-ABA 4-aminobenzoate - 4-NBA 4-nitrobenzoate - 4-HABA 4-hydroxylaminobenzoate - 3,4-diHBA 3,4-dihydroxybenzoate  相似文献   

20.
Mutants of Escherichia coli K-12 blocked in each of the three enzymatic reactions between chorismate and 2,3-dihydroxybenzoate, in the pathway leading to the iron-sequestering compound enterochelin, have been isolated and biochemically characterized. The three genes concerned (designated entA, entB and entC) have been shown to be clustered on the chromosome between purE and gal and to be located near minute 14 by cotransduction with the purE, lip, and fep genes. entA, entB, and entC were shown to be the structural genes for 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase, 2,3-dihydro-2,3-dihydroxybenzoate synthetase, and isochorismate synthetase, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号