首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Psychostimulant methamphetamine (METH) is toxic to striatal dopaminergic and serotonergic nerve terminals in adult, but not in the adolescent, brain. Betulinic acid (BA) and its derivatives are promising anti‐HIV agents with some toxic properties. Many METH users, particularly young men, are HIV‐positive; therefore, they might be treated with BA or its derivative for HIV infection. It is not known whether BA, or any of its derivatives, are neurotoxic in combination with METH in the adolescent brain. The present study investigated the effects of BA and binge METH in the striatum of late adolescent rats. BA or METH alone did not decrease the levels of dopaminergic or serotonergic markers in the striatum whereas BA and METH together decreased these markers in a BA dose‐dependent manner. BA+METH also caused decreases in the levels of mitochondrial complex I in the same manner; BA alone only slightly decreased the levels of this enzyme in striatal synaptosomes. BA or METH alone increased cytochrome c. METH alone decreased parkin, increased complex II and striatal BA levels. These results suggest that METH in combination with BA can be neurotoxic to striatal dopaminergic and serotonergic nerve terminals in the late adolescent brain via mitochondrial dysfunction and parkin deficit.

  相似文献   


2.
3.
Septin 5, a parkin substrate, is a vesicle- and membrane-associated protein that plays a significant role in inhibiting exocytosis. The regulatory function of Septin 5 in dopaminergic (DAergic) neurons of substantia nigra (SN), maintained at relatively low levels, has not yet been delineated. As loss of function mutations of parkin are the principal cause of a familial Parkinson's disease, a prevailing hypothesis is that the loss of parkin activity results in accumulation of Septin 5 which confers neuron-specific toxicity in SN-DAergic neurons. In vitro and in vivo models were used to support this hypothesis. In our well-characterized DAergic SN4741 cell model, acute accumulation of elevated levels of Septin 5, but not synphilin-1 (another parkin substrate), resulted in cytotoxic cell death that was markedly reduced by parkin co-transfection. A transgenic mouse model expressing a dominant negative parkin mutant accumulated moderate levels of Septin 5 in SN-DAergic neurons. These mice acquired a progressive l-DOPA responsive motor dysfunction that developed despite a 25% higher than normal level of striatal dopamine (DA) and no apparent loss of DAergic neurons. The phenotype of this animal, increased striatal dopamine and reduced motor function, was similar to that observed in parkin knockout animals, suggesting a common DAergic alteration. These data suggest that a threshold level of Septin 5 accumulation is required for DAergic cell loss and that l-DOPA-responsive motor deficits can occur even in the presence of elevated DA.  相似文献   

4.
Mutations in the Park2 gene, encoding the RING-HECT hybrid E3 ubiquitin ligase parkin, are responsible for a common familial form of Parkinson disease. By mono- and polyubiquitinating target proteins, parkin regulates various cellular processes, including degradation of proteins within the 26 S proteasome, a large multimeric degradation machine. In our attempt to further elucidate the function of parkin, we have identified the proteasomal ubiquitin receptor Rpn13/ADRM1 as a parkin-interacting protein. We show that the N-terminal ubiquitin-like (Ubl) domain of parkin binds directly to the pleckstrin-like receptor for ubiquitin (Pru) domain within Rpn13. Using mutational analysis and NMR, we find that Pru binding involves the hydrophobic patch surrounding Ile-44 in the parkin Ubl, a region that is highly conserved between ubiquitin and Ubl domains. However, compared with ubiquitin, the parkin Ubl exhibits greater than 10-fold higher affinity for the Pru domain. Moreover, knockdown of Rpn13 in cells increases parkin levels and abrogates parkin recruitment to the 26 S proteasome, establishing Rpn13 as the major proteasomal receptor for parkin. In contrast, silencing Rpn13 did not impair parkin recruitment to mitochondria or parkin-mediated mitophagy upon carbonyl cyanide m-chlorophenyl hydrazone-induced mitochondrial depolarization. However, it did delay the clearance of mitochondrial proteins (TIM23, TIM44, and TOM20) and enhance parkin autoubiquitination. Taken together, these findings implicate Rpn13 in linking parkin to the 26 S proteasome and regulating the clearance of mitochondrial proteins during mitophagy.  相似文献   

5.
Methamphetamine (METH) produces long-term decreases in markers of dopamine (DA) terminals in animals and humans. A decrease in the function of the vesicular monoamine transporter 2 (VMAT2) has been associated with damage to striatal DA terminals caused by METH; however, a possible mechanism for this decrease in VMAT2 function has not been defined. The current study showed that METH caused a rapid decrease to 68% of controls in VMAT2 protein immunoreactivity of the vesicular fraction from striatal synaptosomes within 1 h after a repeated high-dose administration regimen of METH. This decrease was associated with a 75% increase in nitrosylation of VMAT2 protein in the synaptosomal fraction as measured by nitrosocysteine immunoreactivity of VMAT2 protein. The rapid decreases in VMAT2 persisted when evaluated 7 days later and were illustrated by decreases in VMAT2 immunoreactivity and DA content of the vesicular fraction to 34% and 51% of control values, respectively. The decreases were blocked or attenuated by prior injections of the neuronal nitric oxide synthase inhibitor, S-methyl-l-thiocitrulline. These studies demonstrate that METH causes a rapid neuronal nitric oxide synthase-dependent oxidation of VMAT2 and long-term decreases in VMAT2 protein and function. The results also suggest that surviving DA terminals after METH exposure may have a compromised capacity to buffer cytosolic DA concentrations and DA-derived oxidative stress.  相似文献   

6.
N -(2-chloroethyl)- N -ethyl-2-bromobenzylamine (DSP-4) lesions of the locus coeruleus, the major brain noradrenergic nucleus, exacerbate the damage to nigrostriatal dopamine (DA) terminals caused by the psychostimulant methamphetamine (METH). However, because noradrenergic terminals contain other neuromodulators and the noradrenaline (NA) transporter, which may act as a neuroprotective buffer, it was unclear whether this enhancement of METH neurotoxicity was caused by the loss of noradrenergic innervation or the loss of NA itself. We addressed the specific role of NA by comparing the effects of METH in mice with noradrenergic lesions (DSP-4) and those with intact noradrenergic terminals but specifically lacking NA (genetic or acute pharmacological blockade of the NA biosynthetic enzyme dopamine β-hydroxylase; DBH). We found that genetic deletion of DBH (DBH−/− mice) and acute treatment of wild-type mice with a DBH inhibitor (fusaric acid) recapitulated the effects of DSP-4 lesions on METH responses. All three methods of NA depletion enhanced striatal DA release, extracellular oxidative stress (as measured by in vivo microdialysis of DA and 2,3-dihydroxybenzoic acid), and behavioral stereotypies following repeated METH administration. These effects accompanied a worsening of the striatal DA neuron terminal damage and ultrastructural changes to medium spiny neurons. We conclude that NA itself is neuroprotective and plays a fundamental role in the sensitivity of striatal DA terminals to the neurochemical, behavioral, and neurotoxic effects of METH.  相似文献   

7.
The ubiquitin (Ub)/26S proteasome system (UPS) directs the turnover of numerous regulatory proteins, thereby exerting control over many aspects of plant growth, development, and survival. The UPS is directed in part by a group of Ub-like/Ub-associated (UBL/UBA) proteins that help shuttle ubiquitylated proteins to the 26S proteasome for breakdown. Here, we describe the collection of UBL/UBA proteins in Arabidopsis thaliana, including four isoforms that comprise the RADIATION SENSITIVE23 (RAD23) family. The nuclear-enriched RAD23 proteins bind Ub conjugates, especially those linked internally through Lys-48, via their UBA domains, and associate with the 26S proteasome Ub receptor RPN10 via their N-terminal UBL domains. Whereas homozygous mutants individually affecting the four RAD23 genes are without phenotypic consequences (rad23a, rad23c, and rad23d) or induce mild phyllotaxy and sterility defects (rad23b), higher-order mutant combinations generate severely dwarfed plants, with the quadruple mutant displaying reproductive lethality. Both the synergistic effects of a rad23b-1 rpn10-1 combination and the response of rad23b plants to mitomycin C suggest that RAD23b regulates cell division. Taken together, RAD23 proteins appear to play an essential role in the cell cycle, morphology, and fertility of plants through their delivery of UPS substrates to the 26S proteasome.  相似文献   

8.
The neurotransmitter dopamine (DA) has long been implicated as a participant in the neurotoxicity caused by methamphetamine (METH), yet, its mechanism of action in this regard is not fully understood. Treatment of mice with the tyrosine hydroxylase (TH) inhibitor α-methyl- p -tyrosine (AMPT) lowers striatal cytoplasmic DA content by 55% and completely protects against METH-induced damage to DA nerve terminals. Reserpine, by disrupting vesicle amine storage, depletes striatal DA by more than 95% and accentuates METH-induced neurotoxicity. l -DOPA reverses the protective effect of AMPT against METH and enhances neurotoxicity in animals with intact TH. Inhibition of MAO-A by clorgyline increases pre-synaptic DA content and enhances METH striatal neurotoxicity. In all conditions of altered pre-synaptic DA homeostasis, increases or decreases in METH neurotoxicity paralleled changes in striatal microglial activation. Mice treated with AMPT, l -DOPA, or clorgyline + METH developed hyperthermia to the same extent as animals treated with METH alone, whereas mice treated with reserpine + METH were hypothermic, suggesting that the effects of alterations in cytoplasmic DA on METH neurotoxicity were not strictly mediated by changes in core body temperature. Taken together, the present data reinforce the notion that METH-induced release of DA from the newly synthesized pool of transmitter into the extracellular space plays an essential role in drug-induced striatal neurotoxicity and microglial activation. Subtle alterations in intracellular DA content can lead to significant enhancement of METH neurotoxicity. Our results also suggest that reactants derived from METH-induced oxidation of released DA may serve as neuronal signals that lead to microglial activation early in the neurotoxic process associated with METH.  相似文献   

9.
The heat shock protein 70 (Hsp70, human HSPA1A) plays indispensable roles in cellular stress responses and protein quality control (PQC). In the framework of PQC, it cooperates with the ubiquitin-proteasome system (UPS) to clear damaged and dysfunctional proteins in the cell. Moreover, Hsp70 itself is rapidly degraded following the recovery from stress. It was demonstrated that its fast turnover is mediated via ubiquitination and subsequent degradation by the 26S proteasome. At the same time, the effect of Hsp70 on the functional state of proteasomes has been insufficiently investigated. Here, we characterized the direct effect of recombinant Hsp70 on the activity of 20S and 26S proteasomes and studied Hsp70 degradation by the 20S proteasome in vitro. We have shown that the activity of purified 20S proteasomes is decreased following incubation with recombinant human Hsp70. On the other hand, high concentrations of Hsp70 activated 26S proteasomes. Finally, we obtained evidence that in addition to previously reported ubiquitin-dependent degradation, Hsp70 could be cleaved independent of ubiquitination by the 20S proteasome. The results obtained reveal novel aspects of the interplay between Hsp70 and proteasomes.  相似文献   

10.
Abstract: High doses of methamphetamine (METH) produce a long-term depletion in striatal tissue dopamine content. The mechanism mediating this toxicity has been associated with increased concentrations of dopamine and glutamate and altered energy metabolism. In vivo microdialysis was used to assess and alter the metabolic environment of the brain during high doses of METH. METH significantly increased extracellular concentrations of lactate in striatum and prefrontal cortex. This increase was significantly greater in striatum and coincided with the greater vulnerability of this brain region to the toxic effects of METH. To examine the effect of supplementing energy metabolism on METH-induced dopamine content depletions, the striatum was perfused directly with decylubiquinone or nicotinamide to enhance the energetic capacity of the tissue during or after a neurotoxic dosing regimen of METH. When decylubiquinone or nicotinamide was perfused into striatum during the administration of METH, there was no significant effect on METH-induced striatal dopamine efflux, glutamate efflux, or the long-term dopamine depletions measured 7 days later. However, a delayed perfusion with decylubiquinone or nicotinamide for 6 h beginning immediately after the last METH injection attenuated the METH-induced striatal dopamine depletions measured 1 week later. These results support the hypothesis that the compromised metabolic state produced by METH administration predisposes dopamine terminals to the neurotoxic effects of glutamate, dopamine, and/or free radicals.  相似文献   

11.
Prion diseases are associated with the conversion of cellular prion protein (PrP(C)) to toxic β-sheet isoforms (PrP(Sc)), which are reported to inhibit the ubiquitin-proteasome system (UPS). Accordingly, UPS substrates accumulate in prion-infected mouse brains, suggesting impairment of the 26S proteasome. A direct interaction between its 20S core particle and PrP isoforms was demonstrated by immunoprecipitation. β-PrP aggregates associated with the 20S particle, but did not impede binding of the PA26 complex, suggesting that the aggregates do not bind to its ends. Aggregated β-PrP reduced the 20S proteasome's basal peptidase activity, and the enhanced activity induced by C-terminal peptides from the 19S ATPases or by the 19S regulator itself, including when stimulated by polyubiquitin conjugates. However, the 20S proteasome was not inhibited when the gate in the α-ring was open due to a truncation mutation or by association with PA26/PA28. These PrP aggregates inhibit by stabilising the closed conformation of the substrate entry channel. A similar inhibition of substrate entry into the proteasome may occur in other neurodegenerative diseases where misfolded β-sheet-rich proteins accumulate.  相似文献   

12.
13.
During aging, the production of free radicals increases. This can result in damage to protein, the accumulation of which is characteristic of the aging process. This questions the efficacy of proteolytic systems. Among these systems, the proteasome and the adenosine triphosphate-ubiquitin-dependent pathway have been shown to play an important role in the elimination of abnormal proteins. There are two major steps in the ubiquitin-proteasome pathway: the conjugation of a polyubiquitin degradation signal to the substrate and the subsequent degradation of the tagged protein by the 26S proteasome. The 26S proteasome is build-up from the 20S proteasome, which is a cylinder-shaped multimeric complex, and two additional 19S complexes. The 20S proteasome can also bind to 11S regulator and is then implicated in antigen presentation. These regulators confer a high adaptability on proteasome. With advancing age, predisposition to neurodegenerative diseases increases. These diseases are also characterized by protein aggregation. Several findings such as the presence of ubiquinated proteins, usually broken down by proteasomes, and genetic anomalies involving the ubiquitinproteasome system (parkin, UCH-L1) suggest a link between the ubiquitin-proteasome pathway and the genesis of these diseases.  相似文献   

14.
Icariin has been shown to significantly facilitate the differentiation of embryonic stem (ES) cells into cardiomyocytes in vitro. However, the mechanism underlying the icariin-induced cardiomyocyte differentiation is still not fully understood. In the present study, 52 differentially displayed proteins selected from two-dimensional electrophoresis gels were identified by MALDI-TOF mass spectrometry analysis. More than half of proteins could be assigned to six main categories: (1) protein synthesis, metabolism, processing and degradation, (2) stress response, (3) cytoskeleton proteins, (4) energy metabolism, (5) carbohydrate metabolism/transport, and (6) RNA/other nucleic acids metabolisms and transport, nuclear proteins. MALDI-TOF/MS showed that icariin treatment resulted in the induction of five ubiquitin-proteasome system (UPS)-related proteins, such as ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), ubiquitin-conjugating enzyme E2N, proteasome 26S, proteasome subunit-alpha type 6, and proteasome subunit-alpha type 2 in the differentiated cardiomyocytes. These results implied that UPS might play an important role in the control of cardiomyocyte differentiation. Epoxomicin (a proteasome inhibitor) significantly reduced the cardiomyocyte differentiation rate of ES cells and proteasome activities, as well as inhibited NF-κB translocation into the nucleus, which were evidently reversed by presence of icariin. Meanwhile, icariin could significantly reverse the reduction of four proteins (proteasome subunit-alpha type 6, proteasome subunit-alpha type 2, UCH-L1, and ubiquitin-conjugating enzyme E2N) expressions owing to application of epoxomicin. These suggest UPS could be a means by which icariin may regulate expressions of key proteins that control cardiomyocyte differentiation. Taken together, these results indicated that UPS played an important role in ES cell differentiate into cardiomyocytes induced by icariin.  相似文献   

15.
16.
17.
Rad23a and Rad23b proteins are linked to nucleotide excision DNA repair (NER) via association with the DNA damage recognition protein xeroderma pigmentosum group C (XPC) are and known to be implicated in protein turnover by the 26S proteasome. Rad23b-null mice are NER proficient, likely due to the redundant function of the Rad23b paralogue, Rad23a. However, Rad23b-null midgestation embryos are anemic, and most embryos die before birth. Using an unbiased proteomics approach, we found that the majority of Rad23b-interacting partners are associated with the ubiquitin-proteasome system (UPS). We tested the requirement for Rad23b-dependent UPS activity in cellular proliferation and more specifically in the process of erythropoiesis. In cultured fibroblasts derived from embryos lacking Rad23b, proliferation rates were reduced. In fetal livers of Rad23b-null embryos, we observed reduced proliferation, accumulation of early erythroid progenitors, and a block during erythroid maturation. In primary wild-type (WT) erythroid cells, knockdown of Rad23b or chemical inhibition of the proteasome reduced survival and differentiation capability. Finally, the defects linked to Rad23b loss specifically affected fetal definitive erythropoiesis and stress erythropoiesis in adult mice. Together, these data indicate a previously unappreciated requirement for Rad23b and the UPS in regulation of proliferation in different cell types.  相似文献   

18.
In patients with Huntington's disease (HD), the proteolytic activity of the ubiquitin proteasome system (UPS) is reduced in the brain and other tissues. The pathological hallmark of HD is the intraneuronal nuclear protein aggregates of mutant huntingtin. We determined how to enhance UPS function and influence catalytic protein degradation and cell survival in HD. Proteasome activators involved in either the ubiquitinated or the non-ubiquitinated proteolysis were overexpressed in HD patients' skin fibroblasts or mutant huntingtin-expressing striatal neurons. Following compromise of the UPS, overexpression of the proteasome activator subunit PA28gamma, but not subunit S5a, recovered proteasome function in the HD cells. PA28gamma also improved cell viability in mutant huntingtin-expressing striatal neurons exposed to pathological stressors, such as the excitotoxin quinolinic acid and the reversible proteasome inhibitor MG132. These results demonstrate the specific functional enhancements of the UPS that can provide neuroprotection in HD cells.  相似文献   

19.
The present studies examined the role of endogenous dopamine (DA) in methamphetamine (METH)-induced dopaminergic neurotoxicity while controlling for temperature-related neuroprotective effects of the test compounds, reserpine and alpha-methyl-p-tyrosine (AMPT). To determine if the vesicular pool of DA was essential for the expression of METH-induced DA neurotoxicity, reserpine (3 mg/kg, given iintraperitoneally 24-26 h prior to METH) was given prior to a toxic dose regimen of METH. Despite severe striatal DA deficits during the period of METH exposure, mice treated with reserpine prior to METH developed long-term reductions in striatal DA axonal markers, suggesting that vesicular DA stores were not crucial for the development of METH neurotoxicity, but leaving open the possibility that cytoplasmic DA might be involved. To evaluate this possibility, cytoplasmic DA stores were depleted with AMPT prior to METH administration. When this study was carried out at 28 degrees C, complete neuroprotection was observed, likely due to lingering effects on core temperature because when the same study was repeated at 33 degrees C (to eliminate AMPT's hypothermic effect in METH-treated animals), the previously observed neuroprotection was no longer evident. In the third and final set of experiments, mice were pretreated with a combination of reserpine and AMPT, to deplete both vesicular and cytoplasmic DA pools, and to reduce striatal DA levels to negligible values during the period of METH administration (< 0.05%). When core temperature differences were eliminated by raising ambient temperature, METH-induced DA neurotoxic changes were evident in mice pretreated with reserpine and AMPT. Collectively, these findings bring into question the view that endogenous DA plays an essential role in METH-induced DA neurotoxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号