首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
双色双光子激光扫描显微技术可以用来研究生物组织内两种不同蛋白质的表达、定位和示踪.由于大多数双光子显微镜一次只能提供一种波长的激发光,双色同时成像较难实现.mAmetrine和mKate2作为新发现的荧光蛋白对可以用于双光子双色同时成像,这得益于它们各自的优势:mAmetrine的斯托克斯位移和mKate2的高亮度.在765nm的波长激发时,它们的双光子吸收效率都很高.mAmetrine和mKate2能够很好地用于双色双光子活细胞成像实验.  相似文献   

2.

Background  

Two-photon dual-color imaging of tissues and cells labeled with fluorescent proteins (FPs) is challenging because most two-photon microscopes only provide one laser excitation wavelength at a time. At present, methods for two-photon dual-color imaging are limited due to the requirement of large differences in Stokes shifts between the FPs used and their low two-photon absorption (2PA) efficiency.  相似文献   

3.
Fluorescence resonance energy transfer (FRET) between fluorescent proteins (FPs) is a powerful method to visualize and quantify protein-protein interaction in living cells. Unfortunately, the emission bleed-through of FPs limits the usage of this complex technique. To circumvent undesirable excitation of the acceptor fluorophore, using two-photon excitation, we searched for FRET pairs that show selective excitation of the donor but not of the acceptor fluorescent molecule. We found this property in the fluorescent cyan fluorescent protein (CFP)/yellow fluorescent protein (YFP) and YFP/mCherry FRET pairs and performed two-photon excited FRET spectral imaging to quantify protein interactions on the later pair that shows better spectral discrimination. Applying non-negative matrix factorization to unmix two-photon excited spectral imaging data, we were able to eliminate the donor bleed-through as well as the autofluorescence. As a result, we achieved FRET quantification by means of a single spectral acquisition, making the FRET approach not only easy and straightforward but also less prone to calculation artifacts. As an application of our approach, the intermolecular interaction of amyloid precursor protein and the adaptor protein Fe65 associated with Alzheimer's disease was quantified. We believe that the FRET approach using two-photon and fluorescent YFP/mCherry pair is a promising method to monitor protein interaction in living cells.  相似文献   

4.
A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested. The microscope, based on a Nikon RCM 8000, incorporates a femtosecond pulsed laser with wavelength tunable from 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video-rate point scanning, and a pair of nonconfocal detectors for fast emission ratioing. An increase in fluorescent emission of 1.75-fold is consistently obtained with the use of the prechirper optics. The nonconfocal detectors provide another 2.25-fold increase in detection efficiency. Ratio imaging and optical sectioning can therefore be performed more efficiently without confocal optics. Faster frame rates, at 60, 120, and 240 frames/s, can be achieved with proportionally reduced scan lines per frame. Useful two-photon images can be acquired at video rate with a laser power as low as 2.7 mW at specimen with the genetically modified green fluorescent proteins. Preliminary results obtained using this system confirm that the yellow "cameleons" exhibit similar optical properties as under one-photon excitation conditions. Dynamic two-photon images of cardiac myocytes and ratio images of yellow cameleon-2.1, -3.1, and -3.1nu are also presented.  相似文献   

5.
The green fluorescent protein (GFP) has become an invaluable marker for monitoring protein localization and gene expression in vivo. Recently a new red fluorescent protein (drFP583 or DsRed), isolated from tropical corals, has been described [Matz, M.V. et al. (1999) Nature Biotech. 17, 969-973]. With emission maxima at 509 and 583 nm respectively, EGFP and DsRed are suited for almost crossover free dual color labeling upon simultaneous excitation. We imaged mixed populations of Escherichia coli expressing either EGFP or DsRed by one-photon confocal and by two-photon microscopy. Both excitation modes proved to be suitable for imaging cells expressing either of the fluorescent proteins. DsRed had an extended maturation time and E. coli expressing this fluorescent protein were significantly smaller than those expressing EGFP. In aging bacterial cultures DsRed appeared to aggregate within the cells, accompanied by a strong reduction in its fluorescence lifetime as determined by fluorescence lifetime imaging microscopy.  相似文献   

6.
BACKGROUND: Spectrally distinct fluorescent proteins (FPs) have been developed permitting the visualization of several proteins simultaneously in living cells. The emission spectra of FPs, in most cases, overlap, making signal separation based on filter technology inefficient and in cases of bleed-through, inaccurate. Spectral imaging can overcome these obstacles through a process called linear unmixing. Given a complex spectra composed of multiple fluorophores, linear unmixing can reduce the complex signal to its individual, weighted, component spectra. Spectral imaging with two-photon excitation allows the collection of nontruncated emission spectra. The accuracy of linear unmixing under these conditions needs to be evaluated. METHODS: Capillaries containing defined mixtures of CFP and YFP were used to test the accuracy of linear unmixing using spectral images obtained with two-photon excitation. RESULTS: Linear unmixing can be accurate when wavelength and power-matched reference spectra are provided to the algorithm. Linear unmixing errors can occur due to (1) excitation laser contamination of emission signals, (2) the presence of FRET, (3) poor selection of excitation wavelength, and (4) failure to background subtract reference spectra. CONCLUSIONS: Linear unmixing, when judiciously performed, can accurately measure the abundance of CFP and YFP in mixed samples, even when their relative intensities range from 90:1.  相似文献   

7.
应用Nd:YAG激光器和光学光谱分析仪对蛋白质分子的同时吸收双光子过程作了进一步研究,讨论了蛋白质分子双光子过程的特性和估计了它们的双光子吸收截面,并得到胰蛋白酶,白蛋白和色氨酸等分子由于双光子激发产生的荧光光谱.  相似文献   

8.
We measured the emission spectra, intensity decays and anisotropy decays of the single tryptophan residue of human serum albumin (HSA) resulting from one-photon (295-298 nm) and two-photon (590-596) excitation. The emission spectra and intensity decays were independent of the mode of excitation. The anisotropy decays were superficially similar for one- and two-photon excitation. However, upon consideration of the different orientation photoselection for one- and two-photon excitation, the anisotropy data reveal different angles between the absorption and emission oscillators for one-photon and two-photon excitation. This result suggests different relative one-photon and two-photon cross-sections for the 1La and 1Lb transitions of the indole residue. This first report of the time-resolved anisotropy decay of a protein resulting from two-photon excitation suggests that such measurement will yield insights into the complex photophysical properties of tryptophan residues in proteins.  相似文献   

9.
O-acetylserine sulfhydrylase, a homo-dimeric enzyme from Salmonella typhimurium, covalently binds one pyridoxal 5'-phosphate molecule per subunit as a fluorescent coenzyme. Different tautomers of the Schiff base between the coenzyme and lysine 41 generate structured absorption and fluorescence spectra upon one-photon excitation. We investigated the protein population heterogeneity by fluorescence correlation spectroscopy and lifetime techniques upon two-photon excitation. We sampled the fluorescence intensity from a small number of molecules (approximately 10) and analyzed the distribution of photon counts to separately determine the number and the fluorescence brightness of excited protein molecules. The changes in the average number of molecules and in the fluorescence brightness with the excitation wavelength indicate the presence of at least two fluorescent species, with two-photon excitation maxima at 660 and 800 nm. These species have been identified as the enolimine and ketoenamine tautomers of the protein-coenzyme internal aldimine. Their relative abundance is estimated to be 4:1, whereas the ratio of their two-photon cross sections is reversed with respect to the single-photon excitation case. Consistent results are obtained from the measurement of the lifetime decays, which are sensitive to the excited-state heterogeneity. At least two components were detected, with lifetimes of approximately 2.5 and 0.5 ns. The lifetimes are very close to the values measured in bulk solutions upon one-photon excitation and attributed to the ketoenamine tautomer and to a dipolar species formed upon proton dissociation in the excited state.  相似文献   

10.
P E H?nninen  J T Soini  E Soini 《Cytometry》1999,36(3):183-188
We studied the use of a dramatically reduced testing zone in combination with two-photon excitation and photon-burst analysis in high-throughput rare-event detection simulation using a modified flow cytometer. Two-photon excitation measurements were performed with a mode-locked titanium:sapphire laser. Fluorescence emission was measured with a photon-counting avalanche photodiode. Measured signal was analysed offline by autocorrelation and burst detection methods. Test samples were composed of full blood and orange fluorescent polystyrene nanospheres mixed in full blood. Results show that two-photon fluorescence excitation and time-correlation analysis provide a good signal-to-noise ratio for rare-event particle detection in a turbid sample environment.  相似文献   

11.
This report covers the two-photon activation and excitation properties of the PA-GFP, a photoactivatable variant of the Aequorea victoria green fluorescent protein in the spectral region from 720 to 920 nm. It is known from this special form of the molecule that it has an increased level of fluorescence emission when excited at 488 nm after irradiation at lambda approximately 413 nm, under single-photon excitation conditions. Here, we show that upon two-photon irradiation, PA-GFP yields activation in the spectral region from 720 to 840 nm. After photoactivation, the excitation spectrum shifts maintaining the very same emission spectrum of the single-photon case for the native and photoactivated protein. Additionally, when comparing the conventional photoactivation at lambda = 405 nm with a two-photon one, a sharper and better controllable three-dimensional volume of activation is obtained.  相似文献   

12.
Our experiments were designed to test the hypothesis that the cell surface interferon gamma receptor chains are preassembled rather than associated by ligand and to assess the molecular changes on ligand binding. To accomplish this, we used fluorescence resonance energy transfer, a powerful spectroscopic technique that has been used to determine molecular interactions and distances between the donor and acceptor. However, current commercial instruments do not provide sufficient sensitivity or the full spectra to provide decisive results of interactions between proteins labeled with blue and green fluorescent proteins in living cells. In our experiments, we used the blue fluorescent protein and green fluorescent protein pair, attached a monochrometer and charge-coupled device camera to a modified confocal microscope, reduced background fluorescence with the use of two-photon excitation, and focused on regions of single cells to provide clear spectra of fluorescence resonance energy transfer. In contrast to the prevailing view, the results demonstrate that the receptor chains are preassociated and that the intracellular domains move apart on binding the ligand interferon gamma. Application of this technology should lead to new rapid methods for high throughput screening and delineation of the interactome of cells.  相似文献   

13.
Recent years have witnessed enormous advances in fluorescence microscopy instrumentation and fluorescent marker development. 4Pi confocal microscopy with two-photon excitation features excellent optical sectioning in the axial direction, with a resolution in the 100 nm range. Here we apply this technique to cellular imaging with EosFP, a photoactivatable autofluorescent protein whose fluorescence emission wavelength can be switched from green (516 nm) to red (581 nm) by irradiation with 400-nm light. We have measured the two-photon excitation spectra and cross sections of the green and the red species as well as the spectral dependence of two-photon conversion. The data reveal that two-photon excitation and photoactivation of the green form of EosFP can be selectively performed by choosing the proper wavelengths. Optical highlighting of small subcellular compartments was shown on HeLa cells expressing EosFP fused to a mitochondrial targeting signal. After three-dimensionally confined two-photon conversion of EosFP within the mitochondrial networks of the cells, the converted regions could be resolved in a 3D reconstruction from a dual-color 4Pi image stack.  相似文献   

14.
The two-photon excitation fluorescence (TPEF) process of an enhanced green fluorescent protein (EGFP) for fluorescence signals was adaptively controlled by the phase-modulation of femtosecond pulses. After the iteration of pulse shaping, a twofold increase in the ratio of the fluorescence signal to the laser peak power was achieved. Compared with conventional pulses optimized for peak power, phase-optimized laser pulses reduced the bleaching rate of EGFP by a factor of 4 while maintaining the same intensity of the fluorescence signal. Our method will provide a powerful solution to various problems confronting researchers, such as the photobleaching of dyes in two-photon excitation microscopy.  相似文献   

15.
Combination of green fluorescent protein (GFP) and two-photon excitation fluorescence microscopy (TPE) has been used increasingly to study dynamic biochemical events within living cells, sometimes even in vivo. However, the high photon flux required in TPE may lead to higher-order photobleaching within the focal volume, which would introduce misinterpretation about the fine biochemical events. Here we first studied the high-order photobleaching rate of GFP inside live cells by measuring the dependence of the photobleaching rate on the excitation power. The photobleaching rate under one- and two-photon excitation increased with 1-power and 4-power of the incident intensity, respectively, implying the excitation photons might interact with excited fluorophore molecules and increase the probability of photobleaching. These results suggest that in applications where two-photon imaging of GFP is used to study dynamic molecular process, photobleaching may ruin the imaging results and attention should be paid in interpreting the imaging results.  相似文献   

16.
17.
The direct observation of temperature-dependent lipid phase equilibria, using two-photon excitation fluorescence microscopy on giant unilamellar vesicles (GUVs) composed of different lipid mixtures, provides novel information about the physical characteristics of lipid domain coexistence. Physical characteristics such as shape, size, and time evolution of different lipid domains are not directly accessible from the traditional experimental approaches that employ either small and large unilamellar vesicles or multilamellar vesicles. In this short presentation, I will address the most relevant findings reported from our laboratory, regarding the direct observation of lipid domain coexistence at the level of single vesicles in artificial and natural lipid mixtures. In addition, key points concerning our experimental approach will be discussed. The unique advantages of the fluorescent probe 6-dodecanoyl-2-dimethylamino-naphthalene (LAURDAN) under the two-photon excitation fluorescence microscopy will be particularly addressed, especially, the possibility to obtain information about the phase-state of different lipid domains directly from the fluorescent images.  相似文献   

18.
Mizuno H  Sawano A  Eli P  Hama H  Miyawaki A 《Biochemistry》2001,40(8):2502-2510
The biochemical and biophysical properties of a red fluorescent protein from a Discosoma species (DsRed) were investigated. The recombinant DsRed expressed in E. coli showed a complex absorption spectrum that peaked at 277, 335, 487, 530, and 558 nm. Excitation at each of the absorption peaks produced a main emission peak at 583 nm, whereas a subsidiary emission peak at 500 nm appeared with excitation only at 277 or 487 nm. Incubation of E. coli or the protein at 37 degrees C facilitated the maturation of DsRed, resulting in the loss of the 500-nm peak and the enhancement of the 583-nm peak. In contrast, the 500-nm peak predominated in a mutant DsRed containing two amino acid substitutions (Y120H/K168R). Light-scattering analysis revealed that DsRed proteins expressed in E. coli and HeLa cells form a stable tetramer complex. DsRed in HeLa cells grown at 37 degrees C emitted predominantly at 583 nm. The red fluorescence was imaged using a two-photon laser (Nd:YLF, 1047 nm) as well as a one-photon laser (He:Ne, 543.5 nm). When fused to calmodulin, the red fluorescence produced an aggregation pattern only in the cytosol, which does not reflect the distribution of calmodulin. Despite the above spectral and structural complexity, fluorescence resonance energy transfer (FRET) between Aequorea green fluorescent protein (GFP) variants and DsRed was achieved. Dynamic changes in cytosolic free Ca2+ concentrations were observed with red cameleons containing yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), or Sapphire as the donor and RFP as the acceptor, using conventional microscopy and one- or two-photon excitation laser scanning microscopy. Particularly, the use of the Sapphire-DsRed pair rendered the red cameleon tolerant of acidosis occurring in hippocampal neurons, because both Sapphire and DsRed are extremely pH-resistant.  相似文献   

19.
Fluorescence-anisotropy-based homo-FRET detection methods can be employed to study clustering of identical proteins in cells. Here, the potential of fluorescence anisotropy microscopy for the quantitative imaging of protein clusters with subcellular resolution is investigated. Steady-state and time-resolved anisotropy detection and both one- and two-photon excitation methods are compared. The methods are evaluated on cells expressing green fluorescent protein (GFP) constructs that contain one or two FK506-binding proteins. This makes it possible to control dimerization and oligomerization of the constructs and yields the experimental relation between anisotropy and cluster size. The results show that, independent of the experimental method, the commonly made assumption of complete depolarization after a single energy transfer step is not valid here. This is due to a nonrandom relative orientation of the fluorescent proteins. Our experiments show that this relative orientation is restricted by interactions between the GFP barrels. We describe how the experimental relation between anisotropy and cluster size can be employed in quantitative cluster size imaging experiments of other GFP fusions. Experiments on glycosylphosphatidylinisotol (GPI)-anchored proteins reveal that GPI forms clusters with an average size of more than two subunits. For epidermal growth factor receptor (EGFR), we observe that ∼40% of the unstimulated receptors are present in the plasma membrane as preexisting dimers. Both examples reveal subcellular heterogeneities in cluster size and distribution.  相似文献   

20.
The movement of proteins within cells can provide dynamic indications of cell signaling and cell polarity, but methods are needed to track and quantify subcellular protein movement within tissue environments. Here we present a semiautomated approach to quantify subcellular protein location for hundreds of migrating cells within intact living tissue using retrovirally expressed fluorescent fusion proteins and time-lapse two-photon microscopy of intact thymic lobes. We have validated the method using GFP-PKCζ, a marker for cell polarity, and LAT-GFP, a marker for T-cell receptor signaling, and have related the asymmetric distribution of these proteins to the direction and speed of cell migration. These approaches could be readily adapted to other fluorescent fusion proteins, tissues and biological questions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号