首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
叶片性状是决定植物光合能力和羧化能力的关键因素,研究叶片性状在海拔梯度上的变化特征是解释植物对于环境变化的适应策略的重要手段。本文以分布于红池坝(10958′E, 3130′ N)草地的5个常见物种红三叶(Trifolium pratense)、老鹳草(Geranium wilfordii)、紫菀(Aster tataricus)、火绒草(Leontopodium leontopodioides)和绣线菊(Spiraea prunifolia)为研究对象,分析了所有物种(n=56)和不同物种的叶片比叶重(LMA)、叶氮含量(单位面积氮含量Narea、单位重量氮含量Nmass)以及叶片δ13C含量沿海拔梯度(815-2545m)的变化趋势及叶片性状之间的关系。研究结果表明:所有物种样品(n=56)的比叶重(LMA)、Narea和δ13C含量沿海拔梯度的增加呈显著增加趋势;Nmass沿海拔梯度的变化趋势不明显;δ13C含量与LMA、Narea呈现极显著正相关关系;不同物种的叶片性状沿着海拔梯度的响应特征有所不同,绣线菊(S. prunifolia)和老鹳草(G. wilfordii)的叶片性状沿海拔梯度的分布规律与所有物种(n=56)样品分布规律一致,红三叶(T. pratense)、紫菀(A. tataricus)、火绒草(L. leontopodioides)的各叶片性状沿海拔梯度的分布特征有所不同。  相似文献   

2.
Li Y L  Meng Q T  Zhao X Y  Cui J Y 《农业工程》2008,28(6):2486-2492
20 plant species (10 monocots and 10 dicots) grown in Kerqin sandy grassland were incubated under indoor conditions to monitor the amount and rate of CO2 release from the leaf litter. 11 traits of mature fresh leaves including caloric value, contents of Mg, P, N, K, C, C/N, N/P, specific leaf area, dry matter content and leaf surface area were measured to determine the relationship between CO2 release and leaf characteristics. All those traits have great variation among the 20 species with over 3 fold differences between the maximum and minimum values, and a few traits such as leaf Mg content reached as high as 9 folds. After 28 d's incubation, the average CO2 release amount from all the species was (4121 ± 1713) μg kg?1 dry soil. The highest level from Chenopodium acuminatum was (8767 ± 177) μg kg?1 dry soil, which was 5 folds higher than the lowest level ((1669 ± 47)μg kg?1 dry soil) from Digitaria sanguinalis. However, CO2 release rate showed the same trend in all the 20 species, i.e., the leaf litter decomposed faster initially (0–4 d), and gradually slowed down during extended cultural periods. Comparison between monocots and dicots showed that these two taxonomic groups had significant differences in terms of the amount and rate of CO2 released from leaf litter, and N and C contents, leaf C/N, and dry matter content of mature leaves. Contents of N, C and dry matter, and C/N of mature leaves are significantly correlated with CO2 release from leaf litter decomposition, which has been revealed by the Pearson correlation test. It can be concluded that these three traits of mature leaves can be used indirectly to predict decomposition rate of the leaf litter.  相似文献   

3.
气候变化和放牧活动对糙隐子草种群的影响   总被引:16,自引:1,他引:16       下载免费PDF全文
 糙隐子草(Cleistogenes squarrosa)是一种多年生丛生小禾草,属C4植物,在研究气候变化和放牧活动对草原C4植物的影响方面是一种很好的指示植物。本文探讨了在气候变化及放牧干扰条件下糙隐子草种群地上生物量、种群特征和资源利用方式等方面的变化,分析了C4植物对气候变化的响应和在放牧干扰下的生态对策。结果表明:在气候温暖化的情况下,糙隐子草种群生物量及其在群落中的比例都有所上升,放牧大大加快了这一过程。通过逐步回归分析得出糙隐子草种群最大地上生物量与生长季(4~8月)总降雨量(r)和平均温度(t)的关系为:y=-12.451 1+0.018 7r+0.060 1t2 (p=0.003)。总体上,放牧明显降低了其种群高度和每丛生物量,但显著提高了其密度、盖度和地上生物量;密度的变化受气候和放牧互作的影响。如果以植物光合所固定的100 g的碳(C)所需要的其它大量营养元素来衡量植物的养分利用效率,则可以发现,与其它主要植物如羊草(Leymus chinensis)相比,糙隐子草对氮(N)和硫(S)的需求量最少,利用3.17 g的N和0.31 g的S就能生产100 g的C,而羊草则需要4.24 g的N和0.41 g的S才能生产100 g的C。 说明在放牧使土壤比较贫瘠的条件下,糙隐子草的养分利用效率较高,这可能是其在土壤比较贫瘠的退化植物群落竞争中处于优势地位的又一重要原因。  相似文献   

4.
Translocation of carbon (C) and nitrogen (N) was investigated in response to shading of the seagrass Posidonia sinuosa in control (ambient light) and shade (below minimum light requirement) treatments after 10 d shading. A mature leaf was incubated in situ in 13C- and 15N-enriched seawater for 2 h and the appearance of the isotopes in the young leaf and adjacent rhizome monitored over 29 d. C and N isotopes gradually reduced in the mature leaf: of 15N contained in the entire shoot (mature leaf, young leaf and 4 cm rhizome), 95% (control) and 97% (shade) was found in the mature leaf after 2 h incubation and only 75% and 60% remained in the mature leaf after 29 d; 98% and 94% of 13C was found in the mature leaf after 2 h, and it had reduced to 36% and 44% after 29 d. This corresponded to an equal increase in the young leaf + rhizome indicating that the mature leaf is a source of these nutrients to the young leaf and rhizome. C translocation from mature leaves was not significantly affected by the shade treatment. In contrast, there was an increase in 15N taken up by the mature leaves (1.9× higher in the shade), the percent of 15N translocated to the young leaf and rhizome (24% in control and 40% in shade) and N concentration in the young leaf (1.24% control and 1.41% shade) and rhizome (0.86% control and 0.99% shade). Resorption of C and N was also estimated from changes in the total C and N content of the mature leaf over 29 d. N resorption from the mature leaf contributed up to 63% of young leaf N requirements in the control treatment but only 41% in the shade treatment. We conclude that uptake and translocation of N by mature leaves is a response to shading in P. sinuosa and would provide additional N to growing leaves, enhancing light harvesting efficiency.  相似文献   

5.
Patterns of synthesis and breakdown of carbon (C) and nitrogen (N) stores are relatively well known. But the role of mobilized stores as substrates for growth remains less clear. In this article, a novel approach to estimate C and N import into leaf growth zones was coupled with steady-state labeling of photosynthesis ((13)CO(2)/(12)CO(2)) and N uptake ((15)NO(3)(-)/(14)NO(3)(-)) and compartmental modeling of tracer fluxes. The contributions of current C assimilation/N uptake and mobilization from stores to the substrate pool supplying leaf growth were then quantified in plants of a C(3) (Lolium perenne) and C(4) grass (Paspalum dilatatum Poir.) manipulated thus to have contrasting C assimilation and N uptake rates. In all cases, leaf growth relied largely on photoassimilates delivered either directly after fixation or short-term storage (turnover rate = 1.6-3.3 d(-1)). Long-term C stores (turnover rate < 0.09 d(-1)) were generally of limited relevance. Hence, no link was found between the role of stores and C acquisition rate. Short-term (turnover rate = 0.29-0.90 d(-1)) and long-term (turnover rate < 0.04 d(-1)) stores supplied most N used in leaf growth. Compared to dominant (well-lit) plants, subordinate (shaded) plants relied more on mobilization from long-term N stores to support leaf growth. These differences correlated well with the C-to-N ratio of growth substrates and were associated with responses in N uptake. Based on this, we argue that internal regulation of N uptake acts as a main determinant of the importance of mobilized long-term stores as a source of N for leaf growth.  相似文献   

6.
7.
The carbon isotope composition (δ13C) of C3/C4 mixed grassland is reflected in the δ13C of diet, hair or faeces of grazers, if 13C discrimination (13Δ) between grassland vegetation and these tissues is known and constant. However, these relationships could be modified by selective grazing or differential digestibility of the C3 and C4 components, potentially creating a bias between grassland and grazer tissue δ13C. Importantly, these factors have never been studied in detail. We investigated the relation between δ13C of C3/C4 grassland vegetation and that of faeces and hair of sheep in a 3-year (2005–2007) experiment in the Inner Mongolian semi-arid steppe. The experiment employed six stocking rates (0.375–2.25 sheep ha?1 year?1; four replications), which allowed for a large variation in species composition, digestibility, and diet selection. Faecal-nitrogen content, a proxy for digestibility, decreased from 1.9% to 1.5% during the grazing period due to aging of the herbage. At the same time, the C3/C4 ratio decreased due to the later growth initiation of C4 species. 13Δ between diet and faeces (13ΔDF; 0.6‰) and between diet and hair (13ΔDH; ?3.9‰) were not influenced by stocking rate, period in the season or C3/C4 ratio. Moreover, faeces–hair discrimination (13ΔFH; ?4.3‰), which reflects differences between digestibility of the C3 and C4 components, did not vary along the different gradients. The δ13C of grassland vegetation can be estimated from the δ13C of sheep faeces and hair, provided that 13Δ was accounted for. This is useful for landscape- or regional-scale investigations or reconstruction of C3/C4 vegetation distribution from faeces and hair, which provide different temporal and spatial integration of grassland isotope signals.  相似文献   

8.
Carbonyl sulfide (COS) and C(18)OO exchange by leaves provide potentially powerful tracers of biosphere-atmosphere CO(2) exchange, and both are assumed to depend on carbonic anhydrase (CA) activity and conductance along the diffusive pathway in leaves. We investigated these links using C(3) and C(4) plants, hypothesizing that the rates of COS and C(18)OO exchange by leaves respond in parallel to environmental and biological drivers. Using CA-deficient antisense lines of C(4) and C(3) plants, COS uptake was essentially eliminated and discrimination against C(18)OO exchange ((18)Δ) greatly reduced, demonstrating CA's key role in both processes. (18)Δ showed a positive linear correlation with leaf relative uptake (LRU; ratio of COS to CO(2) assimilation rates, A(s)/A(c), normalized to their respective ambient concentrations), which reflected the effects of stomatal conductance on both COS and C(18)OO exchange. Unexpectedly, a decoupling between A(s) and (18)Δ was observed in comparing C(4) and C(3) plants, with a large decrease in (18)Δ but no parallel reduction in A(s) in the former. This could be explained by C(4) plants having higher COS concentrations at the CA site (maintaining high A(s) with reduced CA) and a high phosphoenolpyruvate carboxylase/CA activity ratio (reducing (18)O exchange efficiency between CO(2) and water, but not A(s)). Similar A(s) but higher A(c) in C(4) versus C(3) plants resulted in lower LRU values in the former (1.16 ± 0.20 and 1.82 ± 0.18 for C(4) and C(3), respectively). LRU was, however, relatively constant in both plant types across a wide range of conditions, except low light (<191 μmol photon m(-2) s(-1)).  相似文献   

9.
生长在超干旱环境下的3种相思树种表现出异常低的叶片、树枝、树干、根中δ13C含量 在植物生理生态学中,叶片中碳13(13C)含量负值较少(富集),表明叶片处于通过气孔的气体交换减少,比如在干旱胁迫下。此外,与叶片相比,13C在非光合组织中的负值也较少。然而,对从叶片(光合器官)到树枝、树干和根(非光合器官)中的δ 13C数值的关系知之甚少,特别是缺少在关联密切的多个树种间或者不同器官间,以及对生长在极端高温和干旱胁迫下的树木中进行测定。本研究测定了3种近缘沙漠相思树种(Acacia tortilis、A. raddiana和A. pachyceras)从叶片到根的13C含量。我们在以色列南部成树的叶片组织中测定了δ 13C含量。与此同时,在试验果园进行了为期7年的3个水平的灌溉试验。在试验结束时,测定了叶片、树枝、树干和根的生长参数和δ 13C含量。研究结果表明,叶片组织中δ 13C含量约为−27‰,其同位素贫化程度远超过生长在地球上最干燥和最热环境中的沙漠树种的预期值。在不同的相思树种和不同器官中,所有灌溉水平处理中的δ 13C含量并没有富集(−28‰到ca. −27‰),证实了在成熟相思树中的测定结果。在不同器官中,叶片δ 13C含量与树枝和根的δ 13C含量异常相似,甚至比树干的δ 13C含量负值更少。高度贫化的叶片δ 13C表明,尽管这些树木生长在极端干燥的生境中,但其气孔气体交换较高。非光合组织中缺乏δ 13C富集可能与叶片和异养组织生长的季节耦合有关。  相似文献   

10.
The variations of δ13C in leaf metabolites (lipids, organic acids, starch and soluble sugars), leaf organic matter and CO2 respired in the dark from leaves of Nicotiana sylvestris and Helianthus annuus were investigated during a progressive drought. Under well‐watered conditions, CO2 respired in the dark was 13C‐enriched compared to sucrose by about 4‰ in N. sylvestris and by about 3‰ and 6‰ in two different sets of experiments in H. annuus plants. In a previous work on cotyledonary leaves of Phaseolus vulgaris, we observed a constant 13C‐enrichment by about 6‰ in respired CO2 compared to sucrose, suggesting a constant fractionation during dark respiration, whatever the leaf age and relative water content. In contrast, the 13C‐enrichment in respired CO2 increased in dehydrated N. sylvestris and decreased in dehydrated H. annuus in comparison with control plants. We conclude that (i) carbon isotope fractionation during dark respiration is a widespread phenomenon occurring in C3 plants, but that (ii) this fractionation is not constant and varies among species and (iii) it also varies with environmental conditions (water deficit in the present work) but differently among species. We also conclude that (iv) a discrimination during dark respiration processes occurred, releasing CO2 enriched in 13C compared to several major leaf reserves (carbohydrates, lipids and organic acids) and whole leaf organic matter.  相似文献   

11.
Sekiya N  Yano K 《The New phytologist》2008,179(3):799-807
* Stomatal formation is affected by a plant's external environment, with long-distance signaling from mature to young leaves seemingly involved. However, it is still unclear what is responsible for this signal. To address this question, the relationship between carbon isotope discrimination (Delta) and stomatal density was examined in cowpea (Vigna sinensis). * Plants were grown under various environments that combined different amounts of soil phosphorus (P), soil water, and atmospheric CO(2). At harvest, stomatal density was measured in the youngest fully expanded leaf. The (13)C : (12)C ratio was measured in a young leaf to determine the Delta in mature leaves. * Results indicated that stomatal density is affected by P as well as by amounts of water and CO(2). However, stomatal responses to water and CO(2) were complex because of strong interactions with P. This suggests that the responses are relative, depending on some internal factor being affected by each external variable. Despite such complicated responses, a linear correlation was found between stomatal density and Delta across all environments examined. * It is proposed that the Delta value is a good surrogate for the long-term mean of the intercellular (C(i)) to the atmospheric (C(a)) CO(2) concentration ratio (C(i) : C(a)) and may be useful in understanding stomatal formation beyond complicated interactions.  相似文献   

12.
为探究高海拔地区的植物碳(C)循环过程与其生境的关系,以生长在高山地区的豆科灌木鬼箭锦鸡儿为研究对象,沿着横跨我国东西部山区的样带采集35个样点的鬼箭锦鸡儿叶片和土壤样品,分析了鬼箭锦鸡儿叶片碳稳定同位素组成(δ13C)、土壤δ13C、叶片和土壤δ13C差值(Δδ13C)在不同采样点的特征及其与气候因子、叶片和土壤元素的关系。结果表明:鬼箭锦鸡儿叶片δ13C的变化范围为-30.9‰~-27.1‰,平均值为-28.4‰,土壤δ13C的变化范围为-26.2‰~-23.2‰,平均值为-25.3‰,Δδ13C的变化范围为2.0‰~7.7‰,平均值为3.1‰;叶片δ13C显著低于土壤δ13C,且随着叶片δ13C增加,土壤δ13C先降低后升高;叶片δ13C与生长季均温和叶片C含量呈显著负相关,土壤δ13C与相对湿度和最暖月均温呈显著负相关,与土壤碳∶氮(C∶N)呈显著正相关,随土壤C含量的增加土壤δ13C先降低后升高,Δδ13C与叶片C含量、土壤C含量和土壤C∶N呈显著正相关;气候因子对叶片δ13C和Δδ13C具有直接影响,同时也通过对叶片和土壤元素的影响,间接导致叶片δ13C、土壤δ13C和Δδ13C的改变。高海拔地区的气候因子、叶片和土壤元素共同影响鬼箭锦鸡儿的C循环过程。  相似文献   

13.
丁小慧  宫立  王东波  伍星  刘国华 《生态学报》2012,32(15):4722-4730
放牧通过畜体采食、践踏和排泄物归还影响草地群落组成、植物形态和土壤养分,植物通过改变养分利用策略适应环境变化。通过分析呼伦贝尔草原放牧和围封样地中的群落植物和土壤的碳氮磷养分及化学计量比,探讨放牧对生态系统化学计量学特征和养分循环速率的影响机制。结果如下:(1)群落尺度上,放牧和围封草地植物叶片C、N和P的含量没有显著差异;但是在种群尺度上,放牧草地植物叶片N含量显著高于围封草地;(2)放牧草地土壤全C、全N、有机C、速效P含量,低于围封草地,硝态N含量高于围封草地;土壤全P和铵态N指标没有显著差异;(3)放牧草地植物C∶N比显著低于围封草地,植物残体分解速率较快,提高了生态系统养分循环速率。  相似文献   

14.
聚四氟乙烯(PTFE)塑料管研磨法是测定植物碳同位素比率(δ13C)值常用的前处理方法。该方法处理样品高效快捷,但对植物δ13C可能存在污染。本研究利用人工气候室开展双因素交互试验,包括空气相对湿度(50%和80%)和空气δ13C(13C富集和贫化的空气)两个因素,对比了PTFE塑料管研磨法和不锈钢管研磨法处理C4植物糙隐子草δ13C的结果。结果表明: 在相同湿度条件下,不同空气δ13C处理的植物13C分馏值(Δ13C,矫正了光合作用底物的δ13C差异)原本可以视为重复,但由于PTFE塑料颗粒的混入,相同湿度不同13C丰度空气培养下植物叶片Δ13C平均差值为4.8‰。该污染效应导致单个叶片δ13C测定的误差高达8‰。考虑到C4植物的Δ13C较低(通常为1‰~8‰),这种污染效应已经超出了可以接受的误差范围。通过建立类似Keeling曲线的二元混合模型对误差进行了有效消除,并准确估算了植物样品和污染物的δ13C。说明广泛采用的PTFE管研磨方法对研究C4植物Δ13C并不适用,将导致较大的误差。对精度要求较高的研究内容建议使用不锈钢瓶进行研磨。  相似文献   

15.
The movement of 14C-labelled assimilate to the terminal meristem, stem, mature leaves, tillers and roots was measured in Loliurn perenn and Lolium temulentum after exposure to 14C02 of the youngest fully-expanded leaf and, on fewer occasions, the oldest healthy leaf on the main shoot. During early vegetative growth, the terminal meristem, tillers and roots received most of the 14C exported from the youngest leaf. As the shoot aged, more 14C was exported to the terminal meristem and tillers and less to roots. When the stem became a sizeable sink for 14C at the six-leaf (L. temulentum) or eleven-leaf (L. perenne) stage, less 14C moved to tillers and much less to roots. The terminal meristem continued to receive 14 at a steady rate throughout late vegetative growth. The transition from vegetative to reproductive growth in both species was marked by an abrupt increase in the export of 14C to stem from the upper leaf, but there was little change in the proportion of 14C which moved to the developing leaves and incipient inflorescence at the terminal meristem. At the same time, less 14C moved to tillers and much less to roots. Immediately before ear emergence, the export of 14C from the upper leaf (flag leaf) to the stem declined and the proportion moving to the ear increased, reaching a maximum of 55–75% as the ear emerged. The relative patterns of export of upper and lower leaves showed that while some 14 moved from each leaf to all meristems, the proximity of actively growing meristems appeared to be the main factor which determined the destination of most exported 14C. The distribution of 14C from upper and lower leaves was most alike in young vegetative plants of L. perenne. At later stages of development of both species, the terminal meristem and stem received most 1414C from the upper leaf, while roots and tillers received mos 1414C from the oldest leaf at the base of the shoot.  相似文献   

16.
Leaf samples and tree rings formed between the mid‐1960s and mid‐1990s from sugar maple (Acer saccharum Marsh.) at Gatineau Park (45°30′ N, 75°54′ W), Quebec were analysed for δ13C. Leaf samples were collected at ground level (1–2 m above ground) at monthly intervals during the summer, whereas tree cores were extracted from the largest trees (d.b.h. > 30 cm) in the young deciduous forest in August 1998. Significant linear decreases in δ13C over time were found in foliage and tree rings, but the decrease in δ13C was significantly greater in foliage than in the wood. The apparent isotopic discrimination (Δ) of tree rings varied insignificantly around a mean of 18‰, whereas foliar Δ increased significantly from 19‰ in the 1960s to around 23‰ by the mid 1990s, likely as a result of an increasing canopy effect as the forest matured. Using models of carbon discrimination and Δ‐values of the tree rings, we calculate that the intrinsic water use efficiency of mature sugar maple has increased by approximately 4% over the study period.  相似文献   

17.
低纬高原两个亚生态区烤烟种植生态适应性   总被引:3,自引:0,他引:3  
选择地处低纬高原地区海拔存在显著差异的云南省昭通市昭阳区(海拔1949.5m)和大关县(海拔1065.5m)2个种植烤烟的亚生态区,研究了烤烟品种K326在旺长期至成熟期的碳同位素组成(δ13C)、光合色素及抗性生理特征。结果表明:大关烟叶的δ13C值高于昭阳,成熟期与旺长期相比,昭阳烟叶δ13C值升高了0.19‰,而大关烟叶δ13C值降低了0.16‰;昭阳烟叶叶绿素降低速率和丙二醛的累积速率都比大关快;昭阳烟叶旺长期至成熟期总多酚的累积量大于大关;昭阳烟叶比叶重显著高于大关(P<0.05),且昭阳烟叶的比叶重从旺长期至成熟期的增加幅度更大。试验结果说明,烤烟K326在同化能力和抗性生理等方面对不同生态环境条件的适应性存在差异。  相似文献   

18.
Conductance to CO(2) inside leaves, known as mesophyll conductance (g(m)), imposes large limitations on photosynthesis. Because g(m) is difficult to quantify, it is often neglected in calculations of (13)C photosynthetic discrimination. The 'soluble sugar method' estimates g(m) via differences between observed photosynthetic discrimination, calculated from the δ(13)C of soluble sugars, and discrimination when g(m) is infinite. We expand upon this approach and calculate a photosynthesis-weighted average for canopy mesophyll conductance ((c) g(m)) using δ(13)C of stem phloem contents. We measured gas exchange at three canopy positions and collected stem phloem contents in mature trees of three conifer species (Pseudotsuga menziesii, Thuja plicata and Larix occidentalis). We generated species-specific and seasonally variable estimates of (c)g(m) . We found that (c)g(m) was significantly different among species (0.41, 0.22 and 0.09 mol m(-2) s(-1) for Larix, Pseudotsuga and Thuja, respectively), but was similar throughout the season. Ignoring respiratory and photorespiratory fractionations ((c)Δ(ef)) resulted in ≈30% underestimation of (c)g(m) in Larix and Pseudotsuga, but was innocuous in Thuja. Substantial errors (~1-4‰) in photosynthetic discrimination calculations were introduced by neglecting (c)g(m) and (c)Δ(ef) . Our method is easy to apply and cost-effective, captures species variation and would have captured seasonal variation had it existed. The method provides an average canopy value, which makes it suitable for parameterization of canopy-scale models of photosynthesis, even in tall trees.  相似文献   

19.
植物叶片的养分重吸收是养分贫瘠生境中植物重要的养分保存机制。研究叶片养分重吸收对土壤水分的响应,有助于了解植物对环境的适应策略。以敦煌阳关湿地优势植物芦苇为对象,研究不同水分条件[高: 33.5%±1.9%、中: 26.4%±1.3%、低: 11.3%±1.5%]下芦苇叶片氮磷重吸收模式及其对土壤水分的响应。结果表明: 1)随着土壤水分下降,土壤N浓度显著降低,芦苇成熟叶片及衰老叶片N浓度显著升高,成熟叶片和衰老叶片P浓度及土壤P浓度均无显著变化。2)高水分条件叶片N重吸收效率为 76.1%,显著高于中(65.5%)、低(62.5%)水分条件;不同水分条件叶片P重吸收效率无显著差异。3)成熟叶片和衰老叶片N浓度与叶片N重吸收效率呈极显著负相关;成熟叶片P浓度与叶片P重吸收效率无显著相关性,而衰老叶片P浓度与叶片P重吸收效率呈极显著负相关。说明土壤水分缺乏不利于叶片N重吸收。  相似文献   

20.
Intracanopy variation in net leaf nitrogen (N) resorption and N cycling through leaves in mature walnut (Juglans regia L. cv Hartley) trees were monitored in 3 different years. Differential irradiance among the spurs sampled was inferred from differences among leaves in dry weight per unit area (LW/LA) which varied from 4.0 mg · cm–2 to 7.0 mg · cm–2 in shaded (S) and exposed (E) canopy positions, respectively. Our results, using 15N-depleted (NH4)2SO4 validated the concept that N influx and efflux through fully expanded leaves occurred concurrently during the period of embryo growth. Additionally, it also suggested that N influx into leaves was substantially greater in exposed as compared with shaded canopy positions. Because of its well documented phloem immobility, leaf Ca accumulation was used to better estimate the relative influx of N into exposed and shaded leaves. N cycling varied locally within the tree canopy, i. e. Ca (and presumably N) influx was 100% greater in exposed than shaded tree canopy positions, but influx was not influenced significantly by the proximity of developing fruit. In contrast, both the amount and percentage N efflux was significantly greater during embryo growth in fruit-bearing than defruited spurs. Net leaf N resorption averaged 2–4 times greater (25–30%) in fruit-bearing spurs than the 5–10% decrease in the leaf N content in defruited spurs. Since about 90% of leaf N content reportedly occurs as protein, fruit N demand apparently influenced protein turnover and catalysis in associated spur leaves. The amount of leaf N resorption was greater in exposed than shaded positions in the tree canopy in 2 of the 3 years of data collection. Our data show that like leaf N content, N influx, N efflux and net leaf N resorption vary throughout mature walnut tree canopies under the combined local influences of fruiting and irradiance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号