首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T lymphocytes usually recognize endogenously encoded Ag in the context of MHC class I molecules, whereas exogenous Ag is usually presented by MHC class II molecules. In vitro studies in model systems suggest that presentation of endogenous Ag by class II molecules is inhibited by the association of class II with its invariant chain (Ii). In the present study we test this hypothesis in an in vivo system in which endogenously encoded tumor peptides are presented by tumor cell MHC class II molecules. In this system, transfection of syngeneic MHC class II genes (Aak and Abk) into a highly malignant, Ii negative, mouse tumor (SaI sarcoma) produces an immunogenic tumor (SaI/Ak) that is rejected by the autologous host. The class II+ transfectants also effectively immunize autologous A/J mice against a subsequent challenge of wild-type class II- tumor cells. We have hypothesized that the SaI/Ak transfectants induce protective immunity because they function as APC for endogenously synthesized tumor peptides, and thereby stimulate tumor-specific Th cells, by-passing the need for professional APC. To test the role of Ii as an inhibitor of presentation of endogenous peptides, SaI/Ak tumor cells were supertransfected with Ii gene (SaI/Ak/Ii cells), and the tumorigenicity of the resulting cells determined. Nine SaI/Ak/Ii clones were tested, and their malignancy compared with that of SaI/Ak and SaI cells. Seven of the nine class II+/Ii+ tumor cells are more malignant than class II+/Ii- tumor cells in autologous A/J mice. Expression of Ii therefore restores the malignant phenotype, presumably by preventing presentation of endogenously synthesized tumor peptides. Ii therefore regulates Ag presentation and can be a critical parameter for in vivo tumor immunity.  相似文献   

2.
Transfection of syngeneic MHC class II genes into the lethal mouse SaI tumor abrogates the malignancy of the tumor in the autologous host, and protects the host against subsequent challenges with the wild type class II- tumor. We have hypothesized that the transfectants induce protective immunity by functioning as APC for tumor peptides, and stimulating tumor-specific Th cells. Recent in vitro studies suggest that Ag presentation by class II-restricted APC requires the cytoplasmic domain of the class II molecule, and may involve intracellular signaling via the cytoplasmic domain. To determine if the class II cytoplasmic domain is required for enhanced tumor-specific immunity, SaI mouse sarcoma cells were transfected with syngeneic Aak and Abk genes with truncated cytoplasmic domains. These transfectants are as malignant as wild type class II- SaI cells in autologous A/J mice. Stimulation of tumor-specific immunity by class II+ tumor cells is therefore dependent on the class II cytoplasmic region, and may involve intracellular signaling events.  相似文献   

3.
Cell-based tumor vaccines, consisting of MHC class I+ tumor cells engineered to express MHC class II molecules, stimulate tumor-specific CD4+ T cells to mediate rejection of established, poorly immunogenic tumors. Previous experiments have demonstrated that these vaccines induce immunity by functioning as APCs for endogenously synthesized, tumor-encoded Ags. However, coexpression of the MHC class II accessory molecule invariant chain (Ii), or deletion of the MHC class II cytoplasmic domain abrogates vaccine immunogenicity. Recent reports have highlighted the role of lipid microdomains in Ag presentation. To determine whether Ii expression and/or truncation of MHC class II molecules impact vaccine efficacy by altering MHC class II localization to lipid microdomains, we examined the lipid raft affinity of MHC class II molecules in mouse M12.C3 B cell lymphomas and SaI/A(k) sarcoma vaccine cells. Functional MHC class II heterodimers were detected in lipid rafts of both cell types. Interestingly, expression of Ii in M12.C3 cells or SaI/A(k) cells blocked the MHC class II interactions with cell surface lipid rafts. In both cell types, truncation of either the alpha- or beta-chain decreased the affinity of class II molecules for lipid rafts. Simultaneous deletion of both cytoplasmic domains further reduced localization of class II molecules to lipid rafts. Collectively, these data suggest that coexpression of Ii or deletion of the cytoplasmic domains of MHC class II molecules may reduce vaccine efficacy by blocking the constitutive association of MHC class II molecules with plasma membrane lipid rafts.  相似文献   

4.
NK cells are known to kill tumor cells and produce proinflammatory cytokines that lead to the generation of tumor-specific CTLs. Many studies have used MHC class I-deficient tumor cells and/or adjuvants that induce NK cell responses. In this study, the focus was on less-immunogenic lymphoma cells that express MHC class I as a model to study NK cell responses to tumors that do not directly stimulate NK cell activation. When RMA tumor cells that expressed a truncated version of OVA, or RMA cells alone, were injected into mice that were depleted of NK cells, the mice developed an increased number of tumor-specific CTLs, increased IFN-gamma responses, and a higher amount of Ag presentation in draining LNs compared with mice with intact NK cells. These data suggest that NK cells can inhibit the development of effective adaptive immunity in the absence of signals that trigger NK cell activation.  相似文献   

5.
Recent reports suggested a correlation between decreased expression of tumor cell MHC class I Ag and increased susceptibility to NK cells. These studies led to the hypothesis that tumor cells displaying reduced levels of MHC class I Ag have reduced tumorigenicity in vivo because they are eliminated from the host by endogenous NK cells. The present studies use the murine hepatoma BW7756 and a spontaneous H-2Kb loss variant, Hepa-1, to test this hypothesis. The parental BW7756 tumor is highly malignant in syngeneic C57L/J hosts while Hepa-1 cells do not give rise to tumors, suggesting that the loss of H-2Kb Ag expression correlates with decreased tumorigenicity and NK susceptibility. Hepa-1 cells were therefore transfected with an H-2Kb gene to generate H-2Kb Ag expressing clones. The resulting clones were tested for tumorigenicity. Syngeneic or NK-deficient C57BL/6-beige/beige mice challenged with Hepa-1 or the H-2Kb transfectants rejected the cells, suggesting that reexpression of H-2Kb Ag does not restore tumorigenicity and that NK cells are not involved in Hepa-1 rejection. In vitro H-2Kb Ag-negative and -positive Hepa-1 cells are equally susceptible to tilorone-boosted NK cells, indicating that MHC class I Ag expression also does not affect in vitro NK susceptibility. Tumor challenged athymic nude and sublethally irradiated syngeneic mice develop tumors demonstrating that T cells are probably responsible for rejection of the Hepa-1 tumor, and that H-2Kb Ag expression has no effect on rejection. Inasmuch as the expression of H-2Kb Ag on Hepa-1 cells does not effect tumorigenicity or in vitro NK susceptibility, the previously reported association between reduced MHC class I Ag levels and increased NK susceptibility is not universally applicable.  相似文献   

6.
Tumor cells that constitutively express MHC class I molecules and are genetically modified to express MHC class II (MHC II) and costimulatory molecules are immunogenic and have therapeutic efficacy against established primary and metastatic cancers in syngeneic mice and activate tumor-specific human CD4+ T lymphocytes. Previous studies have indicated that these MHC II vaccines enhance immunity by directly activating tumor-specific CD4+ T cells during the immunization process. Because dendritic cells (DCs) are considered to be the most efficient APCs, we have now examined the role of DCs in CD4+ T cell activation by the MHC II vaccines. Surprisingly, we find that DCs are essential for MHC II vaccine immunogenicity; however, they mediate their effect through "cross-dressing." Cross-dressing, or peptide-MHC (pMHC) transfer, involves the generation of pMHC complexes within the vaccine cells, and their subsequent transfer to DCs, which then present the intact, unprocessed complexes to CD4+ T lymphocytes. The net result is that DCs are the functional APCs; however, the immunogenic pMHC complexes are generated by the tumor cells. Because MHC II vaccine cells do not express the MHC II accessory molecules invariant chain and DM, they are likely to load additional tumor Ag epitopes onto MHC II molecules and therefore activate a different repertoire of T cells than DCs. These data further the concept that transfer of cellular material to DCs is important in Ag presentation, and they have direct implications for the design of cancer vaccines.  相似文献   

7.
Dendritic cell (DC)/tumor cell fusion cells (FCs) can induce potent CTL responses. The therapeutic efficacy of a vaccine requires the improved immunogenicity of both DCs and tumor cells. The DCs stimulated with the TLR agonist penicillin-killed Streptococcus pyogenes (OK-432; OK-DCs) showed higher expression levels of MHC class I and II, CD80, CD86, CD83, IL-12, and heat shock proteins (HSPs) than did immature DCs. Moreover, heat-treated autologous tumor cells displayed a characteristic phenotype with increased expression of HSPs, carcinoembryonic Ag (CEA), MUC1, and MHC class I (HLA-A2 and/or A24). In this study, we have created four types of FC preparation by alternating fusion cell partners: 1) immature DCs fused with unheated tumor cells; 2) immature DCs fused with heat-treated tumor cells; 3) OK-DCs fused with unheated tumor cells; and 4) OK-DCs fused with heat-treated tumor cells. Although OK-DCs fused with unheated tumor cells efficiently enhanced CTL induction, OK-DCs fused with heat-treated tumor cells were most active, as demonstrated by: 1) up-regulation of multiple HSPs, MHC class I and II, CEA, CD80, CD86, CD83, and IL-12; 2) activation of CD4+ and CD8+ T cells able to produce IFN- gamma at higher levels; 3) efficient induction of CTL activity specific for CEA or MUC1 or both against autologous tumor; and 4) superior abilities to induce CD107+ IFN-gamma+ CD8+ T cells and CD154+ IFN-gamma+ CD4+ T cells. These results strongly suggest that synergism between OK-DCs and heat-treated tumor cells enhances the immunogenicity of FCs and provides a promising means of inducing therapeutic antitumor immunity.  相似文献   

8.
To dissect the role of Ag presentation through MHC class I and/or II pathways by dendritic cell (DC)-tumor fusion cells, we have created various types of DC-tumor fusion cells by alternating fusion cell partners. Fusions of MC38/MUC1 carcinoma cells with DC from wild-type (WT-DC), MHC class I knockout (IKO-DC), class II knockout (IIKO-DC), or class I and II knockout (I/IIKO-DC) mice created WTDC-fusion cells (FC), IKO-FC, IIKO-FC, and I/IIKO-FC, respectively. MHC class II- and MUC1-positive fusion cells were constructed by fusion of B16/MUC1 melanoma cells with IKO-DC (IKO/B16-FC). Immunization of MUC1 transgenic mice with 5 x 10(5) WTDC-FC, IKO-FC, IIKO-FC, or I/IIKO-FC provided 100, 91.7, 61.5, and 15.4% protection, respectively, against tumor challenge with MC38/MUC1 cells. In contrast, all mice immunized with irradiated MC38/MUC1 tumor cells or WT-DC developed tumors. One group of mice was immunized with 5 x 10(5) IKO/B16-FC and then challenged with B16/Ia(+)/MUC1 on one flank and MC38/MUC1 on the other flank. Immunization of these mice with IKO/B16-FC resulted in 100 and 78.6% protection against B16/Ia(+)/MUC1 and MC38/MUC1 tumor challenge, respectively. The antitumor immunity induced by immunization with IKO/B16-FC was able to inhibit the growth of MHC class II-negative tumor. In addition, in vivo results correlated with the induction of Ag-specific CTL. Collectively, the data indicate that MHC class II Ag presentation targeting activation of CD4 T cells is indispensable for antitumor immunity.  相似文献   

9.
CD4+ T cells that are activated by a MHC class II/peptide encounter can induce maturation of APCs and promote cytotoxic CD8+ T cell responses. Unfortunately, the number of well-defined tumor-specific CD4+ T cell epitopes that can be exploited for adoptive immunotherapy is limited. To determine whether Th cell responses can be generated by redirecting CD4+ T cells to MHC class I ligands, we have introduced MHC class I-restricted TCRs into postthymic murine CD4+ T cells and examined CD4+ T cell activation and helper function in vitro and in vivo. These experiments indicate that Ag-specific CD4+ T cell help can be induced by the engagement of MHC class I-restricted TCRs in peripheral CD4+ T cells but that it is highly dependent on the coreceptor function of the CD8beta-chain. The ability to generate Th cell immunity by infusion of MHC class I-restricted Th cells may prove useful for the induction of tumor-specific T cell immunity in cases where MHC class II-associated epitopes are lacking.  相似文献   

10.
In previous studies, the murine SaI (A/J derived, KkDd) sarcoma was transfected with the allogeneic MHC class I H-2Kb gene, and expressed high levels of H-2Kb antigen. Contrary to expectations, the tumor cells expressing the alloantigen (SKB3.1M tumor cells) were not rejected by autologous A/J mice. Because these results contradict the laws of transplantation immunology, the present studies were undertaken to examine the immunogenicity of SKB3.1M and SaI cells in allogeneic hosts. Similar to SKB3.1M, SaI cells are lethal in some allogeneic strains, despite tumor-host MHC class I incompatibilities. Tumor challenges of SKB3.1M and SaI cells, however induce MHC class I-specific antibodies and CTL in both tumor-resistant and -susceptible hosts. Although the tumors induce specific CTL, tumor cells are not lysed in vitro by these CTL, suggesting that the tumor cells are resistant to CTL-mediated lysis. Since growth of these tumors does not follow the classical rules of allograft transplantation, and because the tumor is not susceptible to CTL-mediated lysis, we have used Winn assays to identify the effector lymphocyte(s) responsible for SaI rejection. Depletion studies demonstrate that the effector cell is a CD4-CD8+ T lymphocyte. Collectively these studies suggest that the host's response to MHC class I alloantigens of SKB3.1M and SaI cells does not determine tumor rejection, and that effector cells other than classically defined CTL, but with the CD4-CD8+ phenotype, can mediate tumor-specific immunity.  相似文献   

11.
Neoantigens resulting from the inherent genomic instability of tumor cells generally do not trigger immune recognition. Similarly, transfection of tumors with model Ags often fails to elicit CD8+ T cell responses or alter a tumor's growth rate or lethality. We report here that the adoptive transfer of activated Th1-type CD4+ T cells specific for a model tumor Ag results in the de novo generation of CD8+ T cells with specificity to that Ag and concomitant tumor destruction. The anti-tumor effects of the CD4+ T cells required the presence of both MHC class I and class II on host cells, as evidenced by experiments in knockout mice, suggesting that CD4+ T cells enhanced the ability of host APC to activate endogenous CD8+ T cells. These results indicate that the apparent inability of tumor cells expressing highly immunogenic epitopes to activate tumor-specific CD8+ T cells can be altered by activated CD4+ T cells.  相似文献   

12.
The lymphocyte activation gene-3 (LAG-3) product is a MHC class II ligand that has been used in vivo to stimulate MHC class II+ APCs to increase tumor-specific immune responses. We investigated whether LAG-3 could also play an adjuvant role in vivo for the induction of humoral and CD4 or CD8 cell-mediated immune responses when immunizing mice with a particulate (hepatitis B surface Ag) or soluble (OVA) Ag. In both cases, coadministration of 1 microg of a soluble fusion protein between murine LAG-3 and the Fc fraction of a murine IgG2a mAb (mLAG-3Ig) as a vaccine adjuvant induced or increased CTL responses to the corresponding MHC class I-restricted peptide. In addition, splenocytes of mice vaccinated with either the particulate or soluble Ag plus mLAG-3Ig exhibited a significantly greater proliferative response than did splenocytes of mice immunized with Ag and a control Ig molecule. Similarly, these splenocytes had a greater Th1- but not Th2-type cytokine response. Finally, mice immunized with Ag plus mLAG-3Ig produced higher titers of Abs than mice immunized with Ag and a control Ig molecule. Thus, these data provide evidence of a novel means of improving the immunogenicity of subunit vaccines.  相似文献   

13.
Murine L cells expressing the products of transfected HLA-DR1 genes functioned as APC for two influenza-specific, human Th cell clones with comparable efficiency to a DR1-expressing human lymphoblastoid cell line. In order to investigate the restriction specificity of the two Th clones, a transfectant expressing the species-mismatched MHC class II dimer DR1:I-E was tested as an APC. Both T cells showed no loss of Ag sensitivity due to substitution of the murine chain. One of the Th clones, TLC 72, showed even greater degeneracy by responding to Ag in the context of I-Ek. Taking into account the lower level of MHC class II expression on the I-Ek transfectant, there is remarkably little loss of efficiency of Ag-induced T cell activation due to the substitution of I-E for DR as restriction element. The Ag-specific responses of both clones were inhibited by anti-CD4 antibody when DR-transfected L cells or human lymphoblastoid cells were used as APC. This inhibition was also seen when Ag was presented to TLC72 by the I-Ek-expressing transfectant. Whether this inhibition is the result of negative signaling or of blocking an interaction between human CD4 and I-Ek is discussed. Similarly the inhibitory effects of mAb against the T cell accessory molecule LFA/1 were the same for both clones when either the transfectants or the lymphoblastoid cell line were used as APC, suggesting that L cells may express a molecule that is capable of acting as a ligand for human LFA/1. The results presented here further illustrate the value of transfectants in analyzing T cell recognition and accessory cell requirements. The patterns of degeneracy of MHC restriction exhibited by these clones provides a platform for a more detailed analysis of key residues involved in MHC class II-restricted T cell Ag recognition.  相似文献   

14.
CD4 Th cells are critical to the development of coordinated immune responses to infections and tumors. Th cells are activated through interactions of the TCR with MHC class II complexed with peptide. T cell activation is dependent on the density of MHC peptide complexes as well as the duration of interaction of the TCR with APCs. In this study, we sought to determine whether MHC class II peptides could be modified with amino acid sequences that facilitated uptake and presentation with the goal of improving Th cell activation in vitro and in vivo. A model epitope derived from the murine folate receptor α, a self- and tumor Ag, was modified at its carboxyl terminus with the invariant chain-derived Ii-Key peptide and at its N terminus with a peptide that enhances uptake of Ag by APC. Modification of a peptide resulted in enhanced generation of high-avidity murine folate receptor α T cells that persisted in vivo and homed to sites of Ag deposition. The nesting approach was epitope and species independent and specifically excluded expansion of CD4 regulatory T cells. The resulting Th cells were therapeutic, enhanced in vivo helper activity and had an increased ability to resist tolerizing immune microenvironments. In addition to improved immunoadjuvants, this epitope modification strategy may be useful for enhancing ex vivo and in vivo generation of Th cells for preventing and treating diseases.  相似文献   

15.
.174xCEM.T2 (T2) is a human cell hybrid that has a large homozygous deletion within the MHC, including all of the functional class II genes. We have generated stable HLA-DR3 and H-2 I-Ak transfectants of T2 that express parental levels of class II molecules at the cell surface. T2.Ak transfectants fail to stimulate a hen egg lysozyme (HEL)-specific, I-Ak-restricted T cell when incubated with intact HEL. However, stimulation occurs if the appropriate HEL peptide is provided. The T2 cell line therefore has a defect in class II-restricted Ag processing. Biosynthetic studies demonstrate that the kinetics of I-Ak transport in T2.Ak are similar to the parental rates of transport, although the percentage of I-Ak molecules transported appears somewhat lower. I-Ak glycoproteins in T2.Ak associate normally with the I-chain, which appears to be proteolytically cleaved after transport through the Golgi apparatus in a similar fashion to that in the parent cell line, .174xCEM.T1 (T1). The DR alpha beta heterodimers in T2 differ from the parental phenotype in two ways. First, HLA-DR3 expressed in T2 does not have the epitope recognized by the DR3-specific mAb 16.23, although DR3 expressed in the parent does have the epitope. Second, the alpha beta subunits in the parent remain associated when exposed to SDS at room temperature, although those in T2 dissociate.  相似文献   

16.
Hybrid cells derived from fusion of a BALB/c plasmacytoma (TEPC-15) and L cells (C3H origin) were used to stimulate tumor-specific immunity against the parental plasmacytoma cells. Live hybrid cells induced tumor-specific immunity against TEPC-15 more effectively than mitomycin-treated hybrid or TEPC-15 tumor cells. Adoptive transfer of immunity with spleen cells of mice immunized with hybrid cells was also more effective than that with mitomycin-treated tumor cells. The immunity induced by the hybrid cells was specific to the TEPC-15 tumor because the mice that received immune spleen cells were not protected against challenge with either HOPC-8 or McPC-603 plasmacytomas. T cell populations were primarily responsible for the transfer of specific immunity based on the sensitivity of immune cells to anti-Thy 1.2 and complement. Mice that had established solid tumors were treated with 5 x 10(7) spleen cells to evaluate the therapeutic value of the hybrid-induced immune cells. Tumors in the mice that received immune cells gradually regressed over a 40-day period, whereas tumors on the control mice continued to grow. These results suggest that a rearrangement of tumor-specific antigens on allogeneic hybrid cells can enhance their immunogenicity.  相似文献   

17.
Using head and neck tumors, we studied the role of HLA class I and DR antigens on tumor cells in cytotoxic T lymphocyte (CTL) induction. Expression of major histocompatibility complex (MHC) antigens was investigated by two-color flow cytometry analysis and for this study we used the tumor cells, over 50% of which expressed both HLA class I and DR antigens on their surface. In seven cases, tumor cells were divided into three groups according to the specificity of monoclonal antibodies (mAb) to MHC to study the role of MHC antigens on tumor cells in CTL induction: one was not blocked (MHC double-positive tumor), a second was blocked by anti-class I mAb (class-Ingative DR-positive tumor) and third was blocked by anti-DR mAb (class-I-positive DR-negative tumor). Subsequently, these tumors were used to stimulate an autologous mixed lymphocyte/tumor cell culture for 5 days (MLTC) followed by further cultivation with interleukin-2 for 12 days. The induced autologous tumor killer cells were most cytotoxic when non-treated tumors, which consist mainly of cells that are both HLA-class I and DR-positive, were used as stimulator cells. When the tumor cells blocked by anti-DR mAb were used as stimulators, autologous tumor killer activity was lower than that induced by tumor cells blocked by anti-class-I mAb. Moreover, cytolysis by autologous tumor killer cells induced by stimulation of non-treated tumor cells was blocked during the effector phase, 26.6%–42.3% and 32.7%–53.8% by anti-class-I and anti-DR mAb respectively, suggesting that majority of the autologous tumor killer cells are MHC-restricted CD8+ or CD4+ CTL. These results suggest that both MHC class I and class II antigens on head and neck tumor cells play a critical role in inducing CTL.  相似文献   

18.
Intense efforts of research are made for developing antitumor vaccines that stimulate T cell-mediated immunity. Tumor cells specifically express at their surfaces antigenic peptides presented by MHC class I and recognized by CTL. Tumor antigenic peptides hold promise for the development of novel cancer immunotherapies. However, peptide-based vaccines face two major limitations: the weak immunogenicity of tumor Ags and their low metabolic stability in biological fluids. These two hurdles, for which separate solutions exist, must, however, be solved simultaneously for developing improved vaccines. Unfortunately, attempts made to combine increased immunogenicity and stability of tumor Ags have failed until now. Here we report the successful design of synthetic derivatives of the human tumor Ag Melan-A/MART-1 that combine for the first time both higher immunogenicity and high peptidase resistance. A series of 36 nonnatural peptide derivatives was rationally designed on the basis of knowledge of the mechanism of degradation of Melan-A peptides in human serum and synthesized. Eight of them were efficiently protected against proteolysis and retained the antigenic properties of the parental peptide. Three of the eight analogs were twice as potent as the parental peptide in stimulating in vitro Melan-specific CTL responses in PBMC from normal donors. We isolated these CTL by tetramer-guided cell sorting and expanded them in vitro. The resulting CTL efficiently lysed tumor cells expressing Melan-A Ag. These Melan-A/MART-1 Ag derivatives should be considered as a new generation of potential immunogens in the development of molecular anti-melanoma vaccines.  相似文献   

19.
This study focuses on the specific CD4+ T cell requirement for optimal induction of cytotoxicity against MHC class II negative autologous tumors (AuTu) collected from patients with various types of cancer at advanced stages. CD4+ T cells were induced in cultures of cancer patients' malignant effusion-associated mononuclear cells with irradiated AuTu (mixed lymphocyte tumor cultures (MLTC)) in the presence of recombinant IL-2 and recombinant IL-7. Tumor-specific CD4+ T cells did not directly recognize the AuTu cells, but there was an MHC class II-restricted cross-priming by autologous dendritic cells (DCs), used as APC. CD8+ CTL, also induced during the MLTC, lysed specifically AuTu cells or DCs pulsed with AuTu peptide extracts (acid wash extracts (AWE)) in an MHC class I-restricted manner. Removal of CD4+ T cells or DCs from the MLTC drastically reduced the CD8+ CTL-mediated cytotoxic response against the AuTu. AWE-pulsed DCs preincubated with autologous CD4+ T cells were able, in the absence of CD4+ T cells, to stimulate CD8+ T cells to lyse autologous tumor targets. Such activated CD8+ T cells produced IL-2, IFN-gamma, TNF-alpha, and GM-CSF. The process of the activation of AWE-pulsed DCs by CD4+ T cells could be inhibited with anti-CD40 ligand mAb. Moreover, the role of CD4+ T cells in activating AWE-pulsed DCs was undertaken by anti-CD40 mAb. Our data demonstrate for the first time in patients with metastatic cancer the essential role of CD4+ Th cell-activated DCs for optimal CD8+ T cell-mediated killing of autologous tumors and provide the basis for the design of novel protocols in cellular adoptive immunotherapy of cancer, utilizing synthetic peptides capable of inducing T cell help in vivo.  相似文献   

20.
Although CD8(+) T cells play a central role as immune effectors, CD4(+) T cells act to control the activation and persistence of the CD8(+) T cell response in autoimmune disease, antiviral immunity, and experimental systems with immunogenic model tumor Ag. However, little information is available on the effects of CD4(+) T cells on the function of endogenous CD8(+) T lymphocytes recognizing authentic tumor rejection Ag with limited immunogenicity. We report here that the prophylactic or postchallenge administration of T helper Th1-type and Th2-type CD4(+) clones specific for an unmutated rejection Ag (murine P815AB, resembling tumor-specific shared Ag in humans) leads to the induction of P815AB-specific reactivity in vivo and concomitant tumor destruction, with quantitative rather than qualitative differences characterizing the antitumor activity of Th1 vs Th2 cells. Because the transferred CD4(+) cells lacked direct antitumor activity in vitro and required the de novo generation of P815AB-specific CD8(+) T cells in vivo, these findings suggest that CD4(+) lymphocytes can enhance the ability of host APC to initiate an endogenous CD8(+) T cell response to authentic, poorly immunogenic tumor rejection Ag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号