首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Methadone induces CCR5 and promotes AIDS virus infection   总被引:3,自引:0,他引:3  
  相似文献   

13.
14.
15.
16.
17.
18.
A dimeric copper complex of the unsubstituted pyridoxal thiosemicarbazone (H(2)L), [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O, previously tested on Friend murine cell lines has been recently resynthesized to evaluate its behavior on different murine and human leukemic cell lines and has been compared, in vitro and in vivo, with its monomeric counterpart [Cu(H(2)L)(OH(2))Cl]Cl. On TS/A murine adenocarcinoma cell line in vitro, both compounds significantly inhibit cell proliferation at micromolar concentrations, although the dimeric compound is more active. Despite this cytotoxicity they lack in vivo activity on TLX5 lymphoma. The unsubstituted dimeric [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O induces apoptosis on CEM and U937 human cell lines, with IC(50) concentrations of 1.2 x 10(-5) and 6.7 x 10(-6) M, respectively, but it is inactive on K562. Moreover, it alters significantly the cell cycle of U937 and CEM lines and decreases the telomerase activity of U937. To verify if other dimeric copper complexes show relevant biological activity new complexes with N-substituted pyridoxal thiosemicarbazones have been synthesized and characterized using spectroscopic techniques. Three of them, namely [Cu(Me(2)-HL)Cl](2).6H(2)O (Me(2)-H(2)L=pyridoxal N1,N1-dimethylthiosemicarbazone) (1), [Cu(MeMe-HL)Cl](2)Cl(2).4H(2)O (MeMe-HL=pyridoxal N1,N2-dimethylthiosemicarbazone) (2), [Cu(Et-H(2)L)Cl](2)Cl(2).2H(2)O (Et-H(2)L=pyridoxal N1-ethylthiosemicarbazone) (3), were also characterized by X-ray diffractometry. These complexes are dimeric and all three present a square pyramidal coordinative geometry with the ligand showing an SNO tridentate behavior. Their biological activities have been tested in vitro on U937, CEM and K562 cell lines to ascertain their effectiveness in comparison to the corresponding unsubstituted complex [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O. Compound 1 shows weak proliferation inhibition on all three cell lines, but it does not induce apoptosis and it does not inhibit telomerase activity, compound 2 is not effective at low concentration and is toxic at higher doses; compound 3 inhibits CEM cell growth better than complex 1 but it does not exert any other biological effect.  相似文献   

19.
Both 2',3'-dideoxyadenosine and 2',3'-dideoxyinosine have been shown (Mitsuya, H., and Broder, S. (1987) Nature 325, 773-778) to have in vitro activity against the human immunodeficiency virus-1 (HIV). However, these dideoxynucleosides may be catabolized by human T cells, even when adenosine deaminase is inhibited by deoxycoformycin. To overcome this problem, we have synthesized the 2-fluoro-, 2-chloro-, and 2-bromo-derivatives of 2',3'-dideoxyadenosine. The metabolism and anti-HIV activity of the 2-halo-2',3'-dideoxyadenosine derivatives and of 2',3'-dideoxyadenosine were compared. The 2-halo-2',3'-dideoxyadenosine derivatives were not deaminated significantly by cultured CEM T lymphoblasts. Experiments with 2-chloro-2',3'-dideoxyadenosine showed that the T cells converted the dideoxynucleoside to the 5'-monophosphate, 5'-diphosphate, and 5'-triphosphate metabolites. At concentrations lower than those producing cytotoxicity in uninfected cells (3-10 microM), the 2-halo-2',3-dideoxyadenosine derivatives inhibited the cytopathic effects of HIV toward MT-2 T lymphoblasts, and retarded viral replication in CEM T lymphoblasts. Experiments with a deoxycytidine kinase-deficient mutant CEM T cell line showed that this enzyme was necessary for the phosphorylation and anti-HIV activity of the 2-chloro-2',3'-dideoxyadenosine. In contrast, 2',3'-dideoxyadenosine was phosphorylated by the deoxycytidine kinase-deficient mutant and retained anti-HIV activity in this cell line. Thus, the 2-halo derivatives of 2',3'-dideoxyadenosine, in contrast to 2',3'-dideoxyadenosine itself, are not catabolized by T cells. Their anti-HIV and anti-proliferative activities are manifest only in cells expressing deoxycytidine kinase. The in vivo implications of these results for anti-HIV chemotherapy are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号