首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylation Pattern of Lambda Deoxyribonucleic Acid   总被引:1,自引:0,他引:1       下载免费PDF全文
Deoxyribonucleic acid (DNA) extracted from phage lambda grown on Escherichia coli K-12 strain W4032 had 113 +/- 10 5-methylcytosine residues and 215 +/- 20 6-methyl adenine residues per genome, as determined by three independent methods. These methylated nucleotides were distributed equally among the two strands of lambda DNA. Shearing of double-stranded DNA to half-length fragments revealed a slight deficiency of 5-methyl cytosine in the 55% guanine plus cytosine half. Shearing the DNA to fragments of smaller length showed that the distribution of methylated nucleotides along the double helix was uniform with the exception of an undermethylated fragment arising from the center of the lambda DNA molecule. The implication of these results for the function of methylated nucleotides in the lambda DNA molecule is discussed.  相似文献   

2.
The N(6)-methyladenine (MeAde) and 5-methylcytosine (MeC) contents in deoxyribonucleic acid (DNA) of bacteriophage lambda has been analyzed as a function of host specificity. The following facts have emerged: (i) lambda grown on strains harboring the P1 prophage contain ca. 70 more MeAde residues/DNA molecule than lambda grown either in the P1-sensitive parent, or in a P1 immune-defective lysogen which does not confer P1 modification; (ii) lambda grown on strains harboring the N-3 drug-resistance factor contain ca. 60 more MeC residues/DNA molecule than lambda grown on the parental strain lacking the factor; (iii) lambda grown in Escherichia coli B strains is devoid of MeC, whereas lambda grown in a B (N-3) host contains a high level of MeC; (iv) the MeAde content in lambda DNA is not affected by the N-3 factor. These results suggest that P1 controls an adenine-specific DNA methylase, and that the N-3 plasmid controls a cytosine-specific DNA methylase. The N-3 factor has been observed previously to direct cytosine-specific methylation of phage P22 DNA and E. coli B DNA in vivo; in vitro studies presented here demonstrate this activity.  相似文献   

3.
4.
We had earlier characterized the nascent DNA synthesized in permeable cells of Bacillus subtilis in the presence of 5-mercurideoxycytidine triphosphate and 2',3'-dideoxyATP as being substituted at its 5' end with a ribonucleotide moiety of the sequence pApG(pC)1-2 DNA. In this paper, we examine the origin and turnover of the DNA-linked ribonucleotide and its relationship to DNA replication. At least 50% of the RNA-linked nascent DNA chains served as guanylate acceptors when incubated with GTP and the eukaryotic capping enzyme, indicating the presence of 5'-terminal di- or triphosphate groups and suggesting that the RNA moiety is synthesized de novo and is not a degradation product. In nascent DNA produced without limitation of chain growth by dideoxyATP, the degree of terminal ribonucleotide substitution was reduced by 50%, consistent with a linkage between RNA primer removal and DNA chain growth. Such a relationship was demonstrated directly by examining the RNA primer content of nascent DNA synthesized in the absence of dideoxyATP as a function of DNA chain length. As the DNA size increased from 40 to 200 nucleotide residues, the extent of RNA substitution declined from 80% to nearly 0%. Endgroup analysis showed that the loss of RNA was accompanied by a gradual shift from predominantly adenylate residues to 5'-terminal guanylate, consistent with a stepwise removal of ribonucleotides from the 5' end. Evidence that the nascent mercurated DNA synthesized under our experimental conditions was indeed a replicative intermediate came from the study of the time course of DNA chain growth and pulse-chase experiments. In the presence of the DNA ligase inhibitor NMN, mercurated DNA accumulated in two size classes with average length of approximately 750 and 8000 nucleotide residues, presumably representing the mature size of intermediates in discontinuous DNA synthesis. Comparison with the DNA size range at which the loss of the 5'-terminal RNA moiety occurred (40 to 200 residues) indicated that the processing of RNA primers occurred at an early stage during DNA chain elongation, and that moderate size intermediates in discontinuous DNA replication (greater than 200 nucleotides) have already lost their RNA primers.  相似文献   

5.
A group of lambda mutants (mutants lambda 0) harbouring lesser number of EcoRI restriction sites on DNA molecules was selected. lambda3-1 recombinant (genotype lambdab221amgamma210Sr1lambda3+c-Px) was created by crosses of lambda02 phage with other lambda mutants. This phage DNA may be used as a vector molecule which makes it possible to select easily phages harbouring insertions of EcoRI DNA fragments. The maximal size of DNA fragment, the insertion of which would not decrease lambda3-1 viability, is 7.7 megadaltone. Lambda3-1 DNA has three regions heterological to lambda DNA, two of which probably include sites SRIlambda4 and SRIlambda5 and some juxtaposed genes. For example, Ptgene of lambda phage in juxtaposition with site SRIlambda4 is substituted by Px gene on the lambda3-1 DNA molecule.  相似文献   

6.
Fis is a nucleoid-associated protein that interacts with poorly related DNA sequences with a high degree of specificity. A difference of more than 3 orders of magnitude in apparent Kd values was observed between specific (Kd, approximately 1 to 4 nM) and nonspecific (Kd, approximately 4 microM) DNA binding. To examine the contributions of Fis residues to the high-affinity binding at different DNA sequences, 13 alanine substitutions were generated in or near the Fis helix-turn-helix DNA binding motif, and the resulting proteins were purified. In vitro binding assays at three different Fis sites (fis P II, hin distal, and lambda attR) revealed that R85, T87, R89, K90, and K91 played major roles in high-affinity DNA binding and that R85, T87, and K90 were consistently vital for binding to all three sites. Other residues made variable contributions to binding, depending on the binding site. N84 was required only for binding to the lambda attR Fis site, and the role of R89 was dramatically altered by the lambda attR DNA flanking sequence. The effects of Fis mutations on fis P II or hin distal site binding in vitro generally correlated with their abilities to mediate fis P repression or DNA inversion in vivo, demonstrating that the in vitro DNA-binding effects are relevant in vivo. The results suggest that while Fis is able to recognize a minimal common set of DNA sequence determinants at different binding sites, it is also equipped with a number of residues that contribute to the binding strength, some of which play variable roles.  相似文献   

7.
The bacteriophage lambda integrase protein (lambda Int) belongs to a family of tyrosine recombinases that catalyze DNA rearrangements. We have determined a crystal structure of lambda Int complexed with a cleaved DNA substrate through a covalent phosphotyrosine bond. In comparison to an earlier unliganded structure, we observe a drastic conformational change in DNA-bound lambda Int that brings Tyr342 into the active site for cleavage of the DNA in cis. A flexible linker connects the central and the catalytic domains, allowing the protein to encircle the DNA. Binding specificity is achieved through direct interactions with the DNA and indirect readout of the flexibility of the att site. The conformational switch that activates lambda Int for DNA cleavage exposes the C-terminal 8 residues for interactions with a neighboring Int molecule. The protein interactions mediated by lambda Int's C-terminal tail offer a mechanism for the allosteric control of cleavage activity in higher order lambda Int complexes.  相似文献   

8.
In order to model the interaction of hemin with DNA and other polynucleotides, we have studied the degradation of DNA, RNA, and polynucleotides of defined structure by [meso-tetrakis(N-methyl-4-pyridyl)porphinato]manganese(III) (MnTMPP) + KHSO5. The activated porphyrin was shown to release adenine, thymine, and cytosine from DNA; RNA degradation afforded adenine, uracil, and cytosine. The same products were obtained from single- and double-stranded DNA oligonucleotides of defined sequence, and also from single-stranded DNA and RNA homopolymers. The overall yield of bases from the dode-canucleotide d(CGCT3A3GCG) was equal to 14% of the nucleotides present initially, indicating that each porphyrin catalyzed the release of approximately 4 bases. Although no guanine was detected as a product from any of the substrates studied, the ability of MnTMPP + KHSO5 to degrade guanine nucleotides was verified by the destruction of pGp, and by the appearance of bands corresponding to guanosine cleavage following treatment of 32P end labeled DNA restriction fragments with activated MnTMPP. Inspection of a number of sites of MnTMPP-promoted cleavage indicated that the process was sequence-selective, occurring primarily at G residues that were part of 5'-TG-3' or 5'-AG-3' sequences, or at T residues. Also formed in much greater abundance were alkali-labile lesions; these were formed largely at guanosine residues. Also studied was the degradation of a 47-nucleotide RNA molecule containing two hairpins. Degradation of the 5'-32P end labeled RNA substrate afforded no distinct, individual bands, suggesting that multiple modes of degradation may be operative.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
DNA synthesis by the RNA-directed DNA polymerase of Rous sarcoma virus with 70 S viral RNA as template initiates by the covalent attachment of dAMP to the 3′ terminal adenosine of an RNA molecule. Initiation continues throughout the course of a 90-minute enzymatic reaction, and chain propagation occurs on most if not all of the dAMP residues attached to primer RNA. The nature of the primer molecules was established in two ways. First, the RNA was tagged by attachment of radioactive mono- and oligodeoxynucleotides. Second, primers were isolated directly from their covalent complexes with nascent DNA. The results of both procedures indicate that DNA synthesis initiates on the 3′ termini of 4 S RNA molecules hydrogen-bonded to 70 S RNA. Purified primer RNA has a nucleotide composition (G + C = 64%) different from that (G + C = 60%) of other 4 S RNAs found hydrogen-bonded to the 70 S RNA of Rous sarcoma virus.  相似文献   

10.
11.
12.
13.
Novel structure of a human U6 snRNA pseudogene   总被引:2,自引:0,他引:2  
H Theissen  J Rinke  C N Traver  R Lührmann  B Appel 《Gene》1985,36(1-2):195-199
A genomic DNA library containing human placental DNA cloned into phage lambda Charon 4A was screened for snRNA U6 genes. In vitro 32P-labeled U6 snRNA isolated from HeLa cells was used as a hybridization probe. A positive clone containing a 4.6-kb EcoRI fragment of human chromosomal DNA was recloned into the EcoRI site of pBR325 and mapped by restriction endonuclease digestion. Restriction fragments containing U6 RNA sequences were identified by hybridization with isolated U6[32P]RNA. The sequence analysis revealed a novel structure of a U6 RNA pseudogene, bearing two 17-nucleotide(nt)-long direct repeats of genuine U6 RNA sequences arranged in a head-to-tail fashion within the 5' part of the molecule. Hypothetical models as to how this type of snRNA U6 pseudogene might have been generated during evolution of the human genome are presented. When compared to mammalian U6 RNA sequences the pseudogene accounts for a 77% overall sequence homology and contains the authentic 5'- and 3'-ends of the U6 RNA.  相似文献   

14.
M Feiss 《Mutation research》1980,69(2):225-229
Hydroxylamine is a mutagen which is much more active on single-stranded DNA than on double-stranded DNA. It is shown here that the cohesive ends of lambda DNA, with 10 cytidine residues, constitute a hydroxylamine target roughly equal in magnitude to the entire duplex part of the molecule, which contains ca. 25 000 cytidine residues.  相似文献   

15.
The ability of curved DNA upstream of the -35 region to affect the interaction of Escherichia coli RNA polymerase and promoter DNA was examined through the use of hybrid promoters. These promoters were constructed by substituting the curved DNA from two Bacillus subtilis bacteriophage SP82 promoters for the comparable DNA of the bacteriophage lambda promoters lambda pR and lambda pL. The SP82 promoters possessed intrinsic DNA curvature upstream of their -35 regions, as characterized by runs of adenines in phase with the helical repeat. In vitro, the relative affinities of purified sigma 70-RNA polymerase for the promoters were determined in a competition binding assay. Hybrid promoters derived from lambda pR that contained curved DNA were bound by E. coli RNA polymerase more efficiently than was the original lambda pR. Binding of E. coli RNA polymerase to these hybrid promoters was favored on superhelical DNA templates according to gel retardation analysis. Both the supercoiled and relaxed forms of the hybrid lambda pL series were better competitors for E. coli RNA polymerase binding than was the original lambda pL. The results of DNase I footprinting analysis provided evidence for the wrapping of the upstream curved DNA of the hybrid lambda pR promoters around the E. coli RNA polymerase in a tight, nucleosomal-like fashion. The tight wrapping of the upstream DNA around the polymerase may facilitate the subsequent steps of DNA untwisting and strand separation.  相似文献   

16.
A unique monoclonal Ig lambda light chain dimer (protein LOI) was isolated from the serum and urine of a patient with hypocomplementemic membranoproliferative glomerulonephritis. In vitro the lambda light chain dimer efficiently activated the alternative pathway of complement (AP). When added to normal human serum, LOI temporarily enhanced AP hemolytic activity, but during a prolonged incubation the hemolytic activity was depleted. Protein LOI was found to bind to factor H, the main regulator molecule of AP. By binding to the short consensus repeat domain 3 of factor H, the dimer LOI blocked one of three interaction sites between H and C3b and thus inhibited the activity of H and induced an uncontrolled activation of the AP. Structural analysis showed that LOI belonged to the Vlambda3a subgroup of lambda light chains. The variable (V) region of LOI was most closely related to the predicted product of the Vlambda3 germline gene Iglv3s2, although it contained several unique residues that in a tertiary homology model structure form an unusual ring of charged residues around a hydrophobic groove in the putative Ag binding site. This site fitted considerably well with a putative binding site in the molecular model of domain 3 of factor H containing a reciprocal ring of charged amino acids around a hydrophobic area. Apparently, functional blocking of factor H by the Ab fragment-like lambda light chain dimer had initiated the development of a severe form of membranoproliferative glomerulonephritis. Thus, the lambda light chain dimer LOI represents the first described pathogenic miniautoantibody in human disease.  相似文献   

17.
A fluorescence microscopy technique has been developed to visualize the behavior of individual DNA and protein molecules. Real-time direct observation of a single DNA molecule can be used to investigate the dynamics of DNA-protein interactions, such as the DNA digestion reaction by lambda exonuclease. In conventional methods it is impossible to analyze the dynamics of an individual lambda exonuclease molecule on a DNA because they can only observe the average behavior of a number of exonuclease molecules. Observation of a single molecule, on the other hand, can reveal processivity and binding rate of an individual exonuclease molecule. To evaluate the dynamics of lambda exonuclease, a stained lambda DNA molecule with one biotinylated terminal was fixed on an avidin-coated coverslip and straightened using a d.c. electric field. Microscopic observation of digestion of a straightened DNA molecule by lambda exonuclease revealed that the DNA digestion rate was approximately 1000 bases/s and also demonstrated high processivity.  相似文献   

18.
A covalently closed circular form of unintegrated viral DNA obtained from NIH 3T3 cells freshly infected with Moloney murine leukemia virus (M-MLV) and a port of the endogenous M-MLV from the BALB/Mo mouse strain have been cloned in bacteriophage lambda. The unintegrated viral DNA was cleaved with restriction endonuclease HindIII and inserted into the single HindIII site of lambda phage Charon 21A. Similarly high-molecular-weight DNA from BALB/Mo mice ws cleaved sequentially with restriction endonucleases EcoRI and HindIII and separated on the basis of size, and one of the two fractions which reacted with an M-MLV-specific complementary DNA was inserted into the HindIII site of Charon 21A. Recombinant clones containing M-MLV-reacting DNA were analyzed by restriction endonuclease mapping, heteroduplexing, and infectivity assays. The restriction endonuclease map of the insert derived from unintegrated viral DNA, lambda x MLV-1, was comparable to published maps. Electron microscope analysis of the hybrid formed between lambda x MLV-1 DNA and 35S genomic M-MLV RNA showed a duplex structure. The molecularly cloned lambda x MLV-1 DNA contained only one copy of the long terminal repeat and was not infectious even after end-to-end ligation of the insert DNA. The insert DNA derived from endogenous M-MLV, lambda x MLVint-1, contained a DNA stretch measuring 5.4 kilobase pairs in length, corresponding to the 5' part of the genomic viral RNA, and cellular mouse DNA sequences measuring 3.5 kilobase pairs in length. The viral part of the insert showed the typical restriction pattern of M-MLV DNA except that a single restriction site, PvuII, in the 5' long terminal repeat was missing. Reconstructed genomes containing the 5' half derived from the integrated viral DNA and the 3' half derived from the unintegrated viral DNA were able to induce XC plaques after transfection in uninfected mouse fibroblasts.  相似文献   

19.
20.
Calspermin is a heat-stable, acidic calmodulin-binding protein predominantly found in mammalian testis. The cDNA representing the rat form of this protein has been cloned from a rat testis lambda gt11 library. Sequence analysis of two overlapping clones revealed a 232-nucleotide 5'-nontranslated region, 510 nucleotides of open reading frame, a 148-nucleotide 3'-untranslated region, and a poly(A) tail. Authenticity of the clones was confirmed by comparison of a portion of the deduced amino acid sequence with the sequence of a tryptic peptide obtained from the rat testis protein. The lambda gt11 fusion protein was recognized by affinity purified antibodies to pig testis calspermin and bound 125I-calmodulin in a Ca2+-dependent manner. Calspermin cDNA encodes a 169-residue protein with a calculated Mr of 18,735. The putative calmodulin-binding domain is very close to the amino terminus of the protein. This region shows 46% identity with the calmodulin-binding region of rat brain Ca2+/calmodulin-dependent protein kinase II and 32% identity with the equivalent region of chicken smooth muscle myosin light chain kinase. The 5'-nontranslated region reveals significant homology with a portion of the catalytic region of the calmodulin-dependent protein kinase family. Calspermin contains a stretch of 17 contiguous glutamic acid residues in the central region of the molecule. Computer analysis predicts calspermin to be 81% alpha-helix and 14% random coil. Analysis of genomic DNA indicates calspermin to be the product of a unique gene. Northern blot analysis of rat testis RNA reveals a 1.1-kilobase mRNA. This RNA is restricted to testis among several rat tissues examined and could not be identified in total RNA isolated from testes of other mammals. Analysis of cells isolated from rat testis reveals calspermin mRNA to be predominantly expressed in postmeiotic cells indicating that it may be specific to haploid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号