首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine if liquid chromatography mass spectrometry (LC/MS) data of tryptic digests of proteins can be used for quantitation. In theory, the peak area of peptides should correlate to their concentration; hence, the peak areas of peptides from one protein should correlate to the concentration of that particular protein. To evaluate this hypothesis, different amounts of tryptic digests of myoglobin were analyzed by LC/MS in a wide range between 10 fmol and 100 pmol. The results show that the peak areas from liquid chromatography mass spectrometry correlate linearly to the concentration of the protein (r2 = 0.991). The method was further evaluated by adding two different concentrations of horse myoglobin to human serum. The results confirm that the quantitation method can also be used for quantitative profiling of proteins in complex mixtures such as human sera. Expected and calculated protein ratios differ by no more than 16%. We describe a new method combining protein identification with accurate profiling of individual proteins. This approach should provide a widely applicable means to compare global protein expression in biological samples.  相似文献   

2.
A sensitive, precise and accurate quantitative LC-MS/MS method for the measurement of naproxen in human plasma was developed and completely validated according to current FDA and EMA guidelines. The new method employs acetonitrile protein precipitation for sample preparation and uses ketoprofen as the internal standard. Suitability of the new assay was assessed in comparison with 36 reported bioanalytical assays and the pharmacokinetic results obtained by the new method were compared to 11 reported studies in humans. The principal advantage of this LC-MS/MS method is the simultaneous achievement of high absolute recovery (90.0±3.6%), acceptable sensitivity (lower limit of quantitation of 0.100 μg/mL), high inter-day precision (CV≤9.4%), high analytical recovery (between 94.4 and 103.1%), and excellent linearity over the concentration range 0.100-50.0 μg/mL (r(2)≥0.998) combined with a short run time of only 2 min.  相似文献   

3.
Polylactic acid (PLA) is a biodegradable polymer, currently used in pharmaceutical and surgical devices. There is a concern that cyclic polylactic acid (CPLA), which is a by-product of PLA synthesis, may be introduced into the human body as an undesirable contaminant. We carried out a quantitation investigation of the CPLA heptamer (CPLA-7) by liquid chromatography mass spectrometry (LC-MS). We found that CPLA-7 binds strongly with serum proteins and that only 62% of CPLA-7 was recovered after routine deproteination; therefore, we directly injected serum into the LC-MS/MS system after passage through a bovine serum albumin (BSA)-coated chromatographic column and found the recovery of CPLA-7 was improved to 84%, and that the detection (S/N=3) and quantitation limit (S/N=10 and below 15% relative standard deviation) were 1.5 and 2.5 ng/mL, respectively. We conclude that direct injection LC-MS/MS, using a BSA column, is a simple and effective quantitative analysis method for CPLA in serum.  相似文献   

4.
A sensitive, selective, and quantitative method for the simultaneous determination of free and total eicosapentaeonic acid (EPA) and docosahexenoic acid (DHA) has been developed and validated in human plasma using fatty acid free human serum albumin as a surrogate matrix. Clean-up for free EPA and DHA employs a liquid-liquid extraction with hexane to remove plasma interferences and provide for cleaner chromatography. The method for total EPA and DHA requires a digestion of the triglycerides followed by liquid-liquid extraction with hexane. Ultra high performance liquid chromatography (UHPLC) technology on a BEH C18 stationary phase column with 1.7 μm particle size was used for chromatographic separation, coupled to tandem mass spectrometry (UHPLC-MS/MS). The method for free EPA and DHA was validated over the concentration range of 0.05-25 μg/mL, while total EPA and DHA concentration range was 0.5-250 μg/mL. The results from assay validation show that the method is rugged, precise, accurate, and well suited to support pharmacokinetic studies. To our knowledge, this work represents the first UHPLC-MS/MS based method that combines both free and total EPA and DHA with a relatively small sample volume (25 μL aliquot) and a run time of 1.5 min, facilitating automation and high throughput analysis.  相似文献   

5.
To measure myoglobin, a marker for myocardial infarction, directly in human serum, two-dimensional liquid chromatography in combination with electrospray ionization mass spectrometry was applied as an analytical method. High-abundant serum proteins were depleted by strong anion-exchange chromatography. The myoglobin fraction was digested and injected onto a 60 mm x 0.2 mm i.d. monolithic capillary column for quantitation of selected peptides upon mass spectrometric detection. The addition of known amounts of myoglobin to the serum sample was utilized for calibration, and horse myoglobin was added as an internal standard to improve reproducibility. Calibration graphs were linear and facilitated the reproducible and accurate determination of the myoglobin amount present in serum. Manual data evaluation using integrated peak areas and an automated multistage algorithm fitting two-dimensional models of peptide elution profiles and isotope patterns to the mass spectrometric raw data were compared. When the automated method was applied, a myoglobin concentration of 460 pg/microL serum was determined with a maximum relative deviation from the theoretical value of 10.1% and a maximum relative standard deviation of 13.4%.  相似文献   

6.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for simultaneous quantitation of dexamethasone palmitate and dexamethasone in human plasma was developed. After sample preparation by protein precipitation and liquid-liquid extraction, the analytes and internal standard (IS) were separated on a Venusil XBP-C8 column using gradient elution. Multiple reaction monitoring of dexamethasone palmitate, dexamethasone and IS used the precursor to product ion transitions at m/z 631.8-->373.1, m/z 393.2-->147.1 and m/z 264.2-->58.1, respectively. The method was linear over the ranges 1.5-1000ng/mL for dexamethasone palmitate and 2.5-250ng/mL for dexamethasone with intra- and inter-day precisions of <10% and accuracies of 100+/-7%. The assay was applied to a clinical pharmacokinetic study involving the injection of dexamethasone palmitate to healthy volunteers.  相似文献   

7.
Isotopic labeling of cysteine residues with acrylamide was previously utilized for relative quantitation of proteins by MALDI-TOF. Here, we explored and compared the application of deuterated and (13)C isotopes of acrylamide for quantitative proteomic analysis using LC-MS/MS and high-resolution FTICR mass spectrometry. The method was applied to human serum samples that were immunodepleted of abundant proteins. Our results show reliable quantitation of proteins across an abundance range that spans 5 orders of magnitude based on ion intensities and known protein concentration in plasma. The use of (13)C isotope of acrylamide had a slightly greater advantage relative to deuterated acrylamide, because of shifts in elution of deuterated acrylamide relative to its corresponding nondeuterated compound by reversed-phase chromatography. Overall, the use of acrylamide for differentially labeling intact proteins in complex mixtures, in combination with LC-MS/MS provides a robust method for quantitative analysis of complex proteomes.  相似文献   

8.
A high performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was developed to measure the thymosin alpha 1 (Talpha1) concentration in human serum. Tá1 in human serum was determined by solid phase extraction and reverse phase LC-MS/MS. The high-performance liquid chromatography (HPLC) system interfaced with the MS/MS system with a Turbo Ion spray interface. Positive ion detection and multiple reaction monitoring (MRM) mode were used for this human serum quantitation. Eight different concentration standards were used to establish the detection range. Six quality control (QC) and 2 matrix blanks were checked by calibration curves performed on the same day. The lower quantitation limit was 0.5 ng/mL Talpha1 in human serum. Calibration curves were established between 0.5 to 100 ng/mL by weighted linear regression. The correlation coefficients for different days were 0.9955 or greater. Quantitation of Talpha1 by the LC-MS/MS method is fast, accurate, and precise.  相似文献   

9.
A specific, sensitive and widely applicable reversed-phase high-performance liquid chromatography with fluorescence detection (RP-HPLC-FLD) method was developed for the simultaneous determination of thiamphenicol (TAP), florfenicol (FF) and florfenicol amine (FFA) in eggs. Samples were extracted with ethyl acetate-acetonitrile-ammonium hydroxide (49:49:2, v/v), defatted with hexane, followed by RP-HPLC-FLD determination. Liquid chromatography was performed on a 5 μm LiChrospher C(18) column using a mobile phase composed of acetonitrile (A), 0.01 M sodium dihydrogen phosphate containing 0.005 M sodium dodecyl sulfate and 0.1% triethylamine, adjusted to pH 4.8 by 85% phosphoric acid (B) (A:B, 35:65 v/v), at a flow rate of 1.0 mL/min. The fluorescence detector of HPLC was set at 224 nm for excitation wavelength and 290 nm for emission wavelength. Limits of detection (LODs) were 1.5 μg/kg for TAP and FF, 0.5 μg/kg for FFA in eggs; limits of quantitation (LOQs) were 5 μg/kg for TAP and FF, 2 μg/kg for FFA in eggs. Linear calibration curves were obtained over concentration ranges of 0.025-5.0 μg/mL for TAP with determination coefficients of 0.9997, 0.01-10.0 μg/mL for FF with determination coefficients of 0.9997 and 0.0025-2.50 μg/mL for FFA with determination coefficients of 0.9998, respectively. The recovery values ranged from 86.4% to 93.8% for TAP, 87.4% to 92.3% for FF and from 89.0% to 95.2% for FFA. The corresponding intra-day and inter-day variation (relative standard deviation, R.S.D.) found to be less than 6.7% and 10.8%, respectively.  相似文献   

10.
The six phenolic constituents are water-soluble components extracted from the Chinese medical herb danshen, the dried roots of Salvia miltiorrhiza Bunge (Labiatae). An liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based method has been developed for the simultaneous quantification of six phenolic constituents of danshen (magnesium lithospermate B (MLB), rosmarinic acid (RA) and lithospermic acid (LA), caffeic acid (CAA), protocatechuic aldehyde (3,4-dihydroxybenzaldehyde, Pal), 3,4-dihydroxyphenyllactic acid (danshensu)) in human serum with chloramphenicol as internal standard. The serum samples were treated by special liquid-liquid extraction, and the analytes were determined using electrospray negative ionization mass spectrometry in the multiple reaction monitoring (MRM) mode, with sufficient sensitivity to allow analysis of human serum samples generated following administration of a clinically relevant dose. Good linearity over the range 8-2048 ng/mL for six phenolic constituents was observed. The intra- and inter-day precisions (CV) of analysis were <13%, and the accuracy ranged from 88 to 116%. This quantitation method was successfully applied to a pharmacokinetic study of i.v. drip infusion of Danshen injection fluid in human.  相似文献   

11.
Vitamin D therapy is widely used for the treatment of hyperparathyroidism associated with chronic renal failure in renal disease patients. The vitamin D prodrug, 1α-hydroxyvitamin D(2) (1α(OH)D(2)), is used for the treatment of the end stage renal disease patients who as a result of impaired kidney function cannot convert the naturally occurring vitamin D to the active hormonal form namely 1,25-dihydroxyvitamin D(2) (1,25(OH)(2)D(2)). The systemic circulating levels of this active form are in the pg/mL range and represent a significant bioanalytical challenge for therapeutic monitoring. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) is considered the gold standard for the selective and sensitive determination of small molecule therapeutics in biological matrices. However, the reported LC-MS/MS bioanalytical assays for 1,25(OH)(2)D(2) suffer from extensive sample preparation procedures or derivatization protocols to achieve the requisite sensitivity and selectivity. In this paper, we describe an assay that employs 96-well plate solid phase extraction sample preparation combined with highly sensitive LC-MS/MS instrumentation. The utility of ultra high pressure liquid chromatography to reduce the analytical run time was also demonstrated. Employing this assay a lower limit of quantitation of 25.0 pg/mL using 300 μL sample aliquot of rat serum was achieved with linearity obtained over the range of 25.0-1000 pg/mL. Both intra-day and inter-day coefficients of variation were <15% and accuracy across the assay range was within 100±7.24%. The application of the assay was demonstrated for the analysis of 1,25(OH)(2)D(2) rat serum samples to support pharmacokinetic studies conducted at doses down to sub-microgram per kilogram of 1α(OH)D(2).  相似文献   

12.
A simple and sensitive liquid chromatography/positive-ion electrospray ionization mass spectrometry (LC-ESI-MS/MS) method has been developed for the simultaneous determination of sulphasalazine (SASP) and its main metabolite sulphapyridine (SP) and 5-aminosalicylic acid (5-ASA) with 100 μL of human plasma using dimenhydrinate as the internal standard (I.S.). The API-3000 LC-MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. Protein precipitation process was used to extract SASP, SP, 5-ASA and I.S. from human plasma. The total run time was 9.0 min and the elution of SASP, SP and 5-ASA was at 4.8 min, 2.5 min and 2.0 min, respectively. The separation was achieved with a mobile phase consisting of 0.2% formic acid, 2 mM ammonium acetate in water (mobile phase A) and 0.2% formic acid, 2 mM ammonium acetate in methanol (mobile phase B) by using gradient elution on a XBP Phenyl column (100 mm × 2.1 mm, 5 μm). The developed method was validated in human plasma with a lower limit of quantitation of 10 ng/mL for SASP, SP and 5-ASA, respectively. A linear response function was established for the range of concentrations 10-10,000 ng/mL (r>0.99) for SASP and 10-1000 ng/mL (r>0.99) for SP and 5-ASA. The intra and inter-day precision values for SASP, SP and 5-ASA met the acceptance as per FDA guidelines. SASP, SP and 5-ASA were stable during stability studies, i.e., long term, auto-sampler and freeze/thaw cycles. The method was successfully applied for the evaluation of pharmacokinetics of SASP, SP and 5-ASA after single oral doses of 250 mg SASP to 10 healthy volunteers.  相似文献   

13.
Ursolic acid is a hydroxy pentacyclic triterpene, which proved to have sedation, anti-inflammatory, antibacterial, antiulcer and anti-cancer activities. An ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method with high selectivity, sensitivity and throughput has been established and validated for quantitation of total ursolic acid in human plasma. Plasma samples were pretreated by liquid-liquid extraction with ethyl acetate and were chromatographed by an ACQUITY UPLC BEH C(8) column (100 mm×2.1 mm, I.D., 1.7 μm) using mobile phase consisting of acetonitrile and 10 mM ammonium formate (90:10, v/v) at 0.2 mL/min. The duration of chromatography analysis was 3 min. The multiple reaction monitoring (MRM) was performed at m/z 455.1→455.0 for ursolic acid and m/z 469.3→425.2 for glycyrrhetinic acid (internal standard, IS) in the negative ion mode with electrospray ionization (ESI) source. The assay showed good linearity over the range of 10-5000 ng/mL for ursolic acid in human plasma with a lower limit of quantitation of 10 ng/mL. The mean extraction recovery was 73.2±4.5% and the matrix ion suppression ranged from -11.4% to -5.6%. The intra- and inter-day precisions were less than 7.0% and 7.2%, respectively, and the accuracy was within ±2.0%. Ursolic acid was stable during the analysis and the storage period. The validated method has been successfully applied to a pharmacokinetic study after intravenous infusion of Ursolic Acid Nano-liposomes to healthy volunteers.  相似文献   

14.
We report on the development of a robust and relatively high-throughput method for in-depth proteomic analysis of human plasma suitable for biomarker discovery. The method consists of depletion of albumin and IgG and multi-lectin affinity chromatography (M-LAC), followed by nanoLC-MS/MS analysis of digested proteins and label-free comparative quantitation of proteins. The performance of the method is monitored by multiple quality control points to ensure reproducibility of the analysis. The method identifies proteins that are reported to be present in normal plasma at concentrations of 10-100 ng/mL and that may be of particular interest when studying a variety of disease conditions. Numerous tissue leakage proteins of potentially even lower concentrations are also identified. When the method was used in a study to identify potential biomarkers of psoriasis, the differential abundance of proteins present at low mug/mL level was quantitated and later verified by ELISA measurements.  相似文献   

15.
Felbamate (2-phenyl-1,3-propanediol dicarbamate) is a second generation antiepileptic drug used to treat seizures refractory to other antiepileptic drugs. With approximately 3500 new patients exposed annually, several important pharmacologic interaction questions remain unanswered necessitating the need for rapid and accurate methods of felbamate analysis in biological matrices. To this end, a rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the measurement of felbamate in mouse plasma and tissues and human plasma. Plasma (100 μL) and tissues homogenates (100 μL of 100 mg/mL) were spiked with internal standard (carisoprodol) prior to protein precipitation with acetonitrile. Samples were chromatographed on a XBridge Phenyl, 2.5 μm, 4.6 mm×50 mm column with quantitation by internal standard reference monitoring of the ion transitions m/z 239→117 for felbamate and m/z 261→176 for carisoprodol. Calibration curves were linear from 2.5 to 500 ng/mL in mouse or human plasma and 25-5000 pg/mg in tissue homogenates. Recoveries were greater than 97% for plasma and homogenates with accuracies >92% in any of the mouse matrices and >88% in human plasma. Comparable accuracies and precision were found with and without the use of the internal standard in preparation of the calibration curves and suggest that the internal standard may not be required.  相似文献   

16.
An analytical method based upon liquid chromatography coupled to ion trap mass spectrometry (MS) detection with electrospray ionization interface has been developed for the simultaneous identification and quantification of droperidol and ondansetron in human plasma. The two drugs were isolated from 0.5 mL of plasma using a basic liquid-liquid extraction with diethyl ether/heptane (90/10, v/v) and tropisetron and haloperidol as internal standards, with satisfactory extraction recoveries. They were separated on a 5-μm C(18) Highpurity column (150 mm×2.1 mm I.D.) maintained at 30°C. The elution was achieved isocratically with a mobile phase of 2 mM HCOONH(4) pH 3.8 buffer/acetonitrile (60/40, v/v) at a flow rate of 200 μL/min. Data were collected either in full-scan MS mode at m/z 100-450 or in full-scan MS-MS mode, selecting the [M+H] (+) ion at m/z=294.0 for ondansetron, m/z=285.2 for tropisetron, m/z=380.0 for droperidol and m/z=376.0 for haloperidol. The most intense daughter ion of ondansetron (m/z=212.0) and droperidol (m/z=194.0) were used for quantification. Retention times for tropisetron, ondansetron, droperidol and haloperidol were 2.50, 2.61, 3.10 and 4.68 min, respectively. Calibration curves were linear for both compounds in the 0.50-500 ng/mL range. The limits of detection and quantification were 0.10 ng/mL and 0.50 ng/mL, respectively. The intra- and inter-assay precisions were lower than 6.4% and intra- and inter-assay recoveries were in the 97.6-101.9% range for the three 3, 30 and 300 ng/mL concentrations. This method allows simultaneous and rapid measurement of droperidol and ondansetron, which are frequently co-administrated for the prevention of postoperative nausea and vomiting.  相似文献   

17.
A rapid and valid method was developed for simultaneous determination catechin, epicatechin and epicatechin gallate in rat plasmas using scopoletin (103 ng mL(-1)) as an internal standard (IS). The separation was performed on Eclipse plus C18 column (100 mm × 4.6 mm, 1.8 μm) at a flow rate of 0.3 mL min(-1), and acetonitrile-0.1% formic acid was used as mobile phase. The recoveries of three analytes and IS were more than 78.9%. The lower limits of quantitation (LLOQ) in rat plasma were 2.14, 2.38 and 2.08 ng mL(-1) respectively for catechin, epicatechin and epicatechin gallate. Intra-day and inter-day precisions were within 12%. The accuracies were more than 85%. After single oral administration of 15.25 g kg(-1) Cynomorium songaricum extract, C(max) of catechin, epicatechin and epicatechin gallate in rat plasma were respectively 86.69±38.65, 32.57±15.00 and 36.93±12.62 ng mL(-1) while T(max) values were respectively 0.15±0.09, 0.20±0.10 and 0.20±0.13 h. The results demonstrated that the present LC-MS/MS method was sensitive enough for pharmacokinetic study of catichins following oral administration of C. songaricum extract.  相似文献   

18.
A sensitive method using liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) was developed and validated for the analysis of antihistamine drug azatadine in human plasma. Loratadine was used as internal standard (IS). Analytes were extracted from human plasma by liquid/liquid extraction using ethyl acetate. The organic phase was reduced to dryness under a stream of nitrogen at 30 °C and the residue was reconstituted with the mobile phase. 5 μL of the resulting solution was injected onto the LC-MS/MS system. A 4.6 mm × 150 mm, I.D. 5 μm, Agilent TC-C(18) column was used to perform the chromatographic analysis. The mobile phase consisted of ammonium formate buffer 0.010 M (adjusted to pH 4.3 with 1M formic acid)/acetonitrile (20:80, v/v) The chromatographic run time was 5 min per injection and flow rate was 0.6 mL/min. The retention time was 2.4 and 4.4 min for azatadine and IS, respectively. The tandem mass spectrometric detection mode was achieved with electrospray ionization (ESI) iron source and the multiple reaction monitoring (MRM) (291.3 → 248.2m/z for azatadine, 383.3 → 337.3m/z for IS) was operated in positive ion modes. The low limit of quantitation (LLOQ) was 0.05 ng/mL. The intra-day and inter-day precision of the quality control (QC) samples was 8.93-11.57% relative standard deviation (RSD). The inter-day accuracy of the QC samples was 96.83-105.07% of the nominal values.  相似文献   

19.
Sensitive and selective methods based on high performance liquid chromatography (HPLC) with tandem mass spectrometric (MS/MS) detection were developed for the determination of vitamin D(3) in human serum. Derivatization of vitamin D(3) and its stable isotope labeled internal standard provided highly sensitive quantification and selective detection from endogenous compounds. Samples were prepared using the in-tube liquid-liquid extraction (LLE), 96-well plate LLE, and in-tip solid phase micro-extraction (SPME) in 96-well format. In all methods, the MS/MS detection was performed using Applied Biosystems-Sciex API 3000 tandem mass spectrometers interfaced with a heated nebulizer probe and operated in the positive ionization mode. Both tube and plate LLE methods achieved a lower limit of quantitation (LLOQ) of 0.5 ng/mL when 1.0 and 0.4 mL of human serum was processed, respectively, and were validated in the concentration range of 0.5-25 ng/mL; while for the in-tip SPME method, LLOQ was 5 ng/mL with only 0.1 mL of human serum required. Comparisons were made among three different methods, including precision and accuracy, sample throughput, recovery and matrix effects.  相似文献   

20.
A sensitive and high throughput off-line μElution 96-well solid-phase extraction (SPE) followed by strong cation exchange (SCX) liquid chromatography with tandem mass spectrometry (LC/MS/MS) quantification for determination of cefepime has been developed and validated in mouse plasma. Using the chemical analog, ceftazidime as an internal standard (IS), the linear range of the method for the determination of cefepime in mouse plasma was 4–2048 ng/mL with the lower limit of quantitation level (LLOQ) of 4 ng/mL. The inter- and intra-assay precision and accuracy of the method were below 9.05% and ranged from 95.6 to 113%, respectively, determined by quality control (QC) samples at five concentration levels including LLOQ. After μElution SPE, 71.1% of cefepime was recovered. The application of the validated assay for the determination of cefepime in mouse pharmacokinetics (PK) samples after intravenous (IV) and subcutaneous (SC) doses was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号