首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorylation of tyrosine 568 controls nuclear export of Nrf2   总被引:4,自引:0,他引:4  
Nuclear factor Nrf 2, under normal conditions, is retained in the cytosol by INrf 2. Antioxidants and oxidants antagonize this interaction, resulting in the release of Nrf 2. Nrf 2 translocates to the nucleus binds to ARE and activates a battery of chemopreventive genes. Once this is achieved, Nrf 2 is exported out of the nucleus, binds with INrf 2, and degrades. Nrf 2 contains well defined signals that control nuclear import and export of Nrf 2. The present studies demonstrate that phosphorylation of tyrosine 568 is required for Crm1-mediated nuclear export and degradation of Nrf 2. Mutation of tyrosine 568 to alanine and phenylalanine resulted in the loss of interaction with Crm1 and abrogation of nuclear export of Nrf 2. Nrf 2Y568A is deficient in nuclear export and displays delayed degradation compared with wild-type Nrf 2. In addition, Src inhibitor PP2 caused nuclear accumulation of Nrf 2 in normal and hydrogen peroxide-treated cells but had no effect on localization of mutant Nrf 2Y568A. Further experiments with small interfering RNA revealed that Fyn phosphorylated Nrf 2Y568 leading to nuclear export and degradation of Nrf 2.  相似文献   

2.
3.
Nrf2:INrf2 (Keap1) are cellular sensors of oxidative and electrophilic stress. Nrf2 is a nuclear factor that controls the expression and coordinated induction of a battery of genes that encode detoxifying enzymes, drug transporters, antiapoptotic proteins, and proteasomes. In the basal state, Nrf2 is constantly degraded in the cytoplasm by its inhibitor, INrf2. INrf2 functions as an adapter for Cul3/Rbx1 E3 ubiquitin ligase-mediated degradation of Nrf2. Chemicals, including antioxidants, tocopherols including α-tocopherol (vitamin E), and phytochemicals, and radiation antagonize the Nrf2:INrf2 interaction and lead to the stabilization and activation of Nrf2. The signaling events involve preinduction, induction, and postinduction responses that tightly control Nrf2 activation and repression back to the basal state. Oxidative/electrophilic signals activate unknown tyrosine kinases in a preinduction response that phosphorylates specific residues on Nrf2 negative regulators, INrf2, Fyn, and Bach1, leading to their nuclear export, ubiquitination, and degradation. This prepares nuclei for unhindered import of Nrf2. Oxidative/electrophilic modification of INrf2 cysteine 151 followed by PKC phosphorylation of Nrf2 serine 40 in the induction response results in the escape or release of Nrf2 from INrf2. Nrf2 is thus stabilized and translocates to the nucleus, resulting in a coordinated activation of gene expression. This is followed by a postinduction response that controls the “switching off” of Nrf2-activated gene expression. GSK3β, under the control of AKT and PI3K, phosphorylates Fyn, leading to Fyn nuclear localization. Fyn phosphorylates Nrf2 Y568, resulting in nuclear export and degradation of Nrf2. The activation and repression of Nrf2 provide protection against oxidative/electrophilic stress and associated diseases, including cancer. However, deregulation of INrf2 and Nrf2 due to mutations may lead to nuclear accumulation of Nrf2 that reduces apoptosis and promotes oncogenesis and drug resistance.  相似文献   

4.
5.
6.
Mast cells are critical for various allergic disorders. Mast cells express Src family kinases, which relay positive and negative regulatory signals by Ag. Lyn, for example, initiates activating signaling events, but it also induces inhibitory signals. Fyn and Hck are reported to be positive regulators, but little is known about the roles of other Src kinases, including Fgr, in mast cells. In this study, we define the role of Fgr. Endogenous Fgr associates with FcεRI and promotes phosphorylation of Syk, Syk substrates, which include linkers for activation of T cells, SLP76, and Gab2, and downstream targets such as Akt and the MAPKs in Ag-stimulated mast cells. As a consequence, Fgr positively regulates degranulation, production of eicosanoids, and cytokines. Fgr and Fyn appeared to act in concert, as phosphorylation of Syk and degranulation are enhanced by overexpression of Fgr and further augmented by overexpression of Fyn but are suppressed by overexpression of Lyn. Moreover, knockdown of Fgr by small interfering RNAs (siRNAs) further suppressed degranulation in Fyn-deficient bone marrow-derived mast cells. Overexpression of Fyn or Fgr restored phosphorylation of Syk and partially restored degranulation in Fyn-deficient cells. Additionally, knockdown of Fgr by siRNAs inhibited association of Syk with FcεRIγ as well as the tyrosine phosphorylation of FcεRIγ. Of note, the injection of Fgr siRNAs diminished the protein level of Fgr in mice and simultaneously inhibited IgE-mediated anaphylaxis. In conclusion, Fgr positively regulates mast cell through activation of Syk. These findings help clarify the interplay among Src family kinases and identify Fgr as a potential therapeutic target for allergic diseases.  相似文献   

7.
Morphogenetic cell movements during gastrulation shape the vertebrate embryo bodyplan. Non-canonical Wnt signaling has been established to regulate convergence and extension cell movements that mediate anterior-posterior axis elongation. In recent years, many other factors have been implicated in the process by modulation of non-canonical Wnt signaling or by different, unknown mechanisms. We have found that the Src family kinases, Fyn and Yes, are required for normal convergence and extension cell movements in zebrafish embryonic development and they signal in parallel to non-canonical Wnts, eventually converging on a common downstream factor, RhoA. Here, we report that Csk, a negative regulator of Src family kinases has a role in gastrulation cell movements as well. Csk knock down induced a phenotype that was similar to the defects observed after knock down of Fyn and Yes, in that gastrulation cell movements were impaired, without affecting cell fate. The Csk knock down phenotype was rescued by simultaneous partial knock down of Fyn and Yes. We conclude that Csk acts upstream of Fyn and Yes to control vertebrate gastrulation cell movements.  相似文献   

8.
We show that activation of the endogenous or recombinant lutropin/choriogonadotropin receptor (LHR) in mouse Leydig tumor cells (MA-10 cells) leads to the tyrosine phosphorylation of the focal adhesion kinase (FAK) and one of its substrates (paxillin). Using specific antibodies to the five tyrosine residues of FAK that become phosphorylated, we show that activation of the LHR increases the phosphorylation of Tyr576 and Tyr577, but it does not affect the phosphorylation of Tyr397, Tyr861, or Tyr925. Because FAK is a prominent substrate for the Src family of tyrosine kinases (SFKs) we tested for their involvement in the LHR-mediated phosphorylation of FAK-Tyr576. Src is not detectable in MA-10 cells, but two other prominent members of this family (Fyn and Yes) are present. The LHR-mediated phosphorylation of FAK-Tyr576 is readily inhibited by PP2 (a pharmacological inhibitor of SFKs) and by dominant-negative mutants of SKFs. Moreover, activation of the LHR in MA-10 cells results in the stimulation of the activity of Fyn and Yes, and overexpression of either of these two tyrosine kinases enhances the LHR-mediated phosphorylation of FAK-Tyr576. Studies involving activation of other G protein-coupled receptors, overexpression of the different Galpha-subunits, and the use of second messenger analogs suggest that the LHR-induced phosphorylation of FAK-Tyr576 in MA-10 cells is mediated by SFKs, and that this family of kinases is, in turn, independently or cooperatively activated by the LHR-induced stimulation of Gs and Gq/11-mediated pathways.  相似文献   

9.
The receptor-type form of protein tyrosine phosphatase epsilon (RPTP) is among the few tyrosine phosphatases that can support the transformed phenotype of tumor cells. Accordingly, cells from mammary epithelial tumors induced by activated Neu in mice genetically lacking RPTP appear morphologically less transformed and exhibit reduced proliferation. The effect of RPTP in these cells is mediated at least in part by its ability to activate Src, the prototypic member of a family of related kinases. We show here that RPTP is a physiological activator of two additional Src family kinases, Yes and Fyn. Activities of both kinases are inhibited in mammary tumor cells lacking RPTP, and phosphorylation at their C-terminal inhibitory tyrosines is increased. In agreement, opposite effects on activities and phosphorylation of Yes and Fyn are observed following increased expression of PTP. RPTP also forms stable complexes with either kinase, providing physical opportunity for their activation by RPTP. Surprisingly, expression of Yes or of Fyn does not rescue the morphological phenotype of RPTP-deficient tumor cells in contrast with the strong ability of Src to do so. We conclude that RPTP activates Src, Yes, and Fyn, but that these related kinases play distinct roles in Neu-induced mammary tumor cells.  相似文献   

10.
Protein phosphatase 2A (PP2A) is a major phospho-Ser/Thr phosphatase and a key regulator of cellular signal transduction pathways. While PP2A dysfunction has been linked to human cancer and neurodegenerative disorders such as Alzheimer’s disease (AD), PP2A regulation remains relatively poorly understood. It has been reported that the PP2A catalytic subunit (PP2Ac) is inactivated by a single phosphorylation at the Tyr307 residue by tyrosine kinases such as v-Src. However, multiple mass spectrometry studies have revealed the existence of other putative PP2Ac phosphorylation sites in response to activation of Src and Fyn, two major Src family kinases (SFKs). Here, using PP2Ac phosphomutants and novel phosphosite-specific PP2Ac antibodies, we show that cellular pools of PP2Ac are instead phosphorylated on both Tyr127 and Tyr284 upon Src activation, and on Tyr284 following Fyn activation. We found these phosphorylation events enhanced the interaction of PP2Ac with SFKs. In addition, we reveal SFK-mediated phosphorylation of PP2Ac at Y284 promotes dissociation of the regulatory Bα subunit, altering PP2A substrate specificity; the phosphodeficient Y127/284F and Y284F PP2Ac mutants prevented SFK-mediated phosphorylation of Tau at the CP13 (pSer202) epitope, a pathological hallmark of AD, and SFK-dependent activation of ERK, a major growth regulatory kinase upregulated in many cancers. Our findings demonstrate a novel PP2A regulatory mechanism that challenges the existing dogma on the inhibition of PP2A catalytic activity by Tyr307 phosphorylation. We propose dysregulation of SFK signaling in cancer and AD can lead to alterations in PP2A phosphorylation and subsequent deregulation of key PP2A substrates, including ERK and Tau.  相似文献   

11.
Nuclear import and export signals in control of Nrf2   总被引:10,自引:0,他引:10  
Nrf2 binds to the antioxidant response element and regulates expression and antioxidant induction of a battery of chemopreventive genes. In this study, we have identified nuclear import and export signals of Nrf2 and show that the nuclear import and export of Nrf2 is regulated by antioxidants. We demonstrate that Nrf2 contains a bipartite nuclear localization signal (NLS) and a leucine-rich nuclear export signal, which regulate Nrf2 shuttling in and out of the nucleus. Immunofluorescence and immunoblot analysis revealed that Nrf2 accumulates in the nucleus within 15 min of antioxidant treatment and is exported out of nucleus by 8 h after treatment. Nrf2 mutant lacking the NLS failed to enter the nucleus and displayed diminished expression and induction of the downstream NAD(P)H:quinone oxidoreductase 1 gene. The Nrf2 NLS sequence, when fused to green fluorescence protein, resulted in the nuclear accumulation of green fluorescence protein, indicating that this signal sequence was sufficient to direct nuclear localization of Nrf2. A nuclear export signal (NES) was characterized in the C terminus of Nrf2, the deletion of which caused Nrf2 to accumulate predominantly in the nucleus. The Nrf2 NES was sensitive to leptomycin B and could function as an independent export signal when fused to a heterologous protein. Further studies demonstrate that NES-mediated nuclear export of Nrf2 is required for degradation of Nrf2 in the cytosol. These results led to the conclusion that Nrf2 localization between cytosol and nucleus is controlled by both nuclear import and export of Nrf2, and the overall distribution of Nrf2 is probably the result from a balance between these two processes. Antioxidants change this balance in favor of nuclear accumulation of Nrf2, leading to activation of chemopreventive proteins. Once this is achieved, Nrf2 exits the nucleus for binding to INrf2 and degradation.  相似文献   

12.
The receptor for the macrophage colony stimulating factor-1 (CSF-1R) is a transmembrane glycoprotein with intrinsic tyrosine kinase activity. CSF-1 stimulation promotes the growth of cells of the macrophage lineage and of fibroblasts engineered to express CSF-1R. We show that CSF-1 stimulation resulted in activation of three Src family kinases, Src, Fyn and Yes. Concomitant with their activation, all three Src family kinases were found to associate with the ligand-activated CSF-1 receptor. These interactions were also demonstrated in SF9 insect cells co-infected with viruses encoding the CSF-1 receptor and Fyn, and the isolated SH2 domain of Fyn was capable of binding the CSF-1R in vitro. Analysis of mutant CSF-1Rs revealed that the 'kinase insert' (KI) domain of CSF-1R was not required for interactions with Src family kinases, but that mutation of one of the receptor autophosphorylation sites, Tyr809, reduced both their binding and enzymatic activation. Because fibroblasts expressing this receptor mutant are unable to form colonies in semi-solid medium or to grow in chemically defined medium in the presence of CSF-1, the Src family kinases may play a physiological role in the mitogenic response to CSF-1.  相似文献   

13.
Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that gamma-tubulin (gamma-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, gamma-tubulin, and with anti-phosphotyrosine antibody revealed that gamma-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in gamma-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated gamma-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing gamma-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of gamma-tubulin interaction with tubulin dimers or other proteins during neurogenesis.  相似文献   

14.
The neuroprotective effects of lithium, a mood stabilizer, against glutamate-induced excitotoxicity in rat cortical neurons were associated with a decrease in Tyr1472 phosphorylation of the N-methyl-D-aspartate (NMDA) receptor NR2B subunit and a loss of receptor activity. Since this receptor tyrosine phosphorylation is mediated by the Src-family tyrosine kinases, we investigated the effects of lithium on the Src kinase activity. Levels of phosphorylated Src kinase at Tyr416, an index of Src activation, were reduced after treatment with LiCl (1 mM) for more than 3 days. Protein levels of Src-family kinases such as Src, Fyn, and Yes were unchanged by lithium treatment. The activities of cytosolic protein tyrosine kinase and protein phosphatase were also unchanged by lithium treatment, indicating the selectivity and the modulation. Moreover, the levels of postsynaptic densities (PSD) and SynGAP, the scaffolding proteins of the NMDA receptor complex, were unaltered by lithium. A Src kinase inhibitor, SU6656, and an NR2B antagonist, ifenprodil, partially blocked glutamate excitotoxicity. Our results suggest that lithium-induced inactivation of Src kinase contributes to this drug-induced NMDA receptor inhibition and neuroprotection against excitotoxicity.  相似文献   

15.
A role for the receptor-like protein tyrosine phosphatase alpha (PTPalpha) in regulating the kinase activity of Src family members has been proposed because ectopic expression of PTPalpha enhances the dephosphorylation and activation of Src and Fyn [1] [2] [3]. We have generated mice lacking catalytically active PTPalpha to address the question of whether PTPalpha is a physiological activator of Src and Fyn, and to investigate its other potential functions in the context of the whole animal. Mice homozygous for the targeted PTPalpha allele (PTPalpha-/-) and lacking detectable PTPalpha protein exhibited no gross phenotypic defects. The kinase activities of Src and Fyn were significantly reduced in PTPalpha-/- mouse brain and primary embryonic fibroblasts, and this correlated with enhanced phosphorylation of the carboxy-terminal regulatory Tyr527 of Src in PTPalpha-/- mice. Thus, PTPalpha is a physiological positive regulator of the tyrosine kinases Src and Fyn. Increased tyrosine phosphorylation of several unidentified proteins was also apparent in PTPalpha-/- mouse brain lysates. These may be PTPalpha substrates or downstream signaling proteins. Taken together, the results indicate that PTPalpha has a dual function as a positive and negative regulator of tyrosine phosphorylation events, increasing phosphotyrosyl proteins through activation of Src and Fyn, and directly or indirectly removing tyrosine phosphate from other unidentified proteins.  相似文献   

16.
PDGF receptors and Src family kinases are concentrated in caveolae, where signal transduction cascades involving these molecules are thought to be organized. The Src family tyrosine kinases are cotransducers of signals emanating from the activated PDGF receptor. However, the Src family kinase substrates that are involved in PDGF-induced signaling remain to be fully elucidated. We have identified a 29-kDa protein in caveolae that was phosphorylated in response to PDGF stimulation. This protein, pp29, was tightly bound to the caveolar coat protein caveolin-1. pp29 was among the most prominent phosphoproteins observed in cells overexpressing Fyn, suggesting that it may be a Fyn substrate. Consistent with this, pp29 was among a specific subset of proteins whose PDGF-stimulated phosphorylation was blocked by expression of kinase inactive Fyn. These data indicate that pp29 lies downstream of Fyn activation in a PDGF-stimulated signaling pathway, and that pp29 is an abundant site for nucleation of signal transduction cascades.  相似文献   

17.
The translocated actin recruiting phosphoprotein (Tarp) is injected into the cytosol shortly after Chlamydia trachomatis attachment to a target cell and subsequently phosphorylated by an unidentified tyrosine kinase. A role for Tarp phosphorylation in bacterial entry is unknown. In this study, recombinant C. trachomatis Tarp was employed to identify the host cell kinase(s) required for phosphorylation. Each tyrosine rich repeat of L2 Tarp harbors a sequence similar to a Src and Abl kinase consensus target. Furthermore, purified p60-src, Yes, Fyn, and Abl kinases were able to phosphorylate Tarp. Mutagenesis of potential tyrosines within a single tyrosine rich repeat peptide indicated that both Src and Abl kinases phosphorylate the same residues suggesting that C. trachomatis Tarp may serve as a substrate for multiple host cell kinases. Surprisingly, chemical inhibition of Src and Abl kinases prevented Tarp phosphorylation in culture and had no measurable effect on bacterial entry into host cells.  相似文献   

18.
Huang R  Fang P  Kay BK 《New biotechnology》2012,29(5):526-533
Fyn is a nonreceptor protein tyrosine kinase that belongs to a highly conserved kinase family, Src family kinases. Fyn plays an important role in inflammatory processes and neuronal functions. To generate a synthetic affinity reagent that can be used to probe Fyn, a phage-display library of fibronectin type III monobodies was affinity selected with the Src Homology 3 (SH3) domain of Fyn and three binders were isolated. One of the three binders, G9, is specific in binding to the SH3 domain of Fyn, but not to the other members of the Src family (i.e. Blk, Fgr, Hck, Lck, Lyn, Src and Yes), even though they share 51-81% amino acid identity. The other two bind principally to the Fyn SH3 domain, with some cross-reactivity to the Yes SH3 domain. The G9 binder has a dissociation constant of 166±6nM, as measured by isothermal titration calorimetry, and binds only to the Fyn SH3 domain out of 150 human SH3 domains examined in an array. Interestingly, although the G9 monobody lacks proline in its randomized BC and FG loops, it binds at the same site on the SH3 domain as proline-rich ligands, as revealed by competition assays. The G9 monobody, identified in this study, may be used as a highly selective probe for detecting and purifying cellular Fyn kinase.  相似文献   

19.
A single mutation in the nucleotide binding pocket of select protein kinases allows for use of a bulky, substituted-ATP analog not used by the wild-type kinase [1]. Using this approach with the protein tyrosine kinase c-Src, we have generated a mutant T338G and expressed it in Src/Yes/Fyn null fibroblasts (SYF1) at near endogenous levels. T338G Src exhibits high specificity for a substituted ATP analog N(6)-2-phenyl ethyl ATP (peATP), which is not used by wild-type c-Src in autophosphorylation nor substrate phosphorylation assays. By employing the T338G Src mutant and [gamma-(32)P]peATP analog, we demonstrate that c-Src can directly phosphorylate focal adhesion kinase (Fak) in vitro. We also show that incubation of permeabilized, T338 Src-expressing cells with peATP causes an increase in Fak tyrosine phosphorylation not observed in wild-type Src cells. Taken together, these data provide evidence that Src directly phosphorylates Fak and demonstrates the limitations of using this modified ATP strategy for analysis of direct substrates of protein kinases in permeabilized cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号