首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian homolog B1 of Unc-93 Caenorhabditis elegans known as UNC93B1 is a chaperone protein that mediates translocation of the nucleic acid-sensing Toll-like receptors (TLRs) from the endoplasmic reticulum to the endolysosomes. The triple deficient (UNC93B1 mutant) mice have a functional single point mutation in the UNC93B1 that results in non-functional TLR3, TLR7, and TLR9. Herein, we demonstrate that UNC93B1 mutant mice, in the C57BL/6 (resistant) genetic background, are highly susceptible to Leishmania major infection. Enhanced swelling of the footpad was associated with high levels of interleukin 10, decreased levels of interferon γ, and increased parasitism. None of the single TLR3, TLR7, and TLR9 knock-out (KO) mice resemble the UNC93B1 mutant phenotype upon infection with L. major. Whereas the double TLR7/TLR9 KO showed a partial phenotype, the triple TLR3/TLR7/TLR9 KO mice were as susceptible as the UNC93B1 mutant mice, when infected with Leishmania parasites. Finally, we demonstrate that treatment with either anti-interleukin 10 receptor monoclonal antibody or recombinant interleukin 12 restored a robust anti-parasite TH1 response and reverted the susceptible phenotype of UNC93B1 mutant mice. Altogether, our results indicate the redundant and essential role of nucleic acid-sensing TLR3, TLR7 and TLR9 in inducing interleukin 12, development of a TH1 response, and resistance to L. major infection in resistant C57BL/6 mice.  相似文献   

2.
3.
Toll-like receptors (TLRs) are the key molecular sensors used by the mammalian innate immune system to detect various types of pathogens. Tlr13 is a novel and uncharacterized member of the mammalian TLR family. Here we report the cloning and characterization of tlr13. Tlr13 is predominantly expressed in the spleen, particularly in dendritic cells and macrophages. Tlr13 appears to activate a MyD88- and TAK1-dependent TLR signaling pathway, inducing the activation of NF-κB. This receptor can also activate type 1 interferon through IRF7. Furthermore, Tlr13 seems to be another intracellular TLR. Remarkably, cells expressing tlr13 fail to respond to known TLR ligands but instead respond specifically to vesicular stomatitis virus. Cells with the knockdown of tlr13 are highly susceptible to vesicular stomatitis virus infection. Thus, these results provide an important insight into the potential role of the novel Toll-like receptor tlr13 in the recognition of viral infection.  相似文献   

4.
Toll-like receptors (TLRs) play a critical role in the initiation of immune responses against invading pathogens. MicroRNAs have been shown to be important regulators of TLR signaling. In this study, we have found that the stimulation of multiple TLRs rapidly reduced the levels of microRNA-92a (miRNA-92a) and some other members of the miRNA-92a family in macrophages. miR-92a mimics significantly decreased, whereas miR-92a knockdown increased, the activation of the JNK/c-Jun pathway and the production of inflammatory cytokines in macrophages when stimulated with ligands for TLR4. Furthermore, mitogen-activated protein kinase kinase 4 (MKK4), a kinase that activates JNK/stress-activated protein kinase, was found to be directly targeted by miR-92a. Similar to the effects of the miR-92a mimics, knockdown of MKK4 inhibited the activation of JNK/c-Jun signaling and the production of TNF-α and IL-6. In conclusion, we have demonstrated that TLR-mediated miR-92a reduction feedback enhances TLR-triggered production of inflammatory cytokines in macrophages, thus outlining new mechanisms for fine-tuning the TLR-triggered inflammatory response.  相似文献   

5.
TIR (Toll/IL-1 receptor) domains mediate interactions between TLR (Toll-like) or IL-1 family receptors and signaling adapters. While homotypic TIR domain interactions mediate receptor activation they are also usurped by microbial TIR domain containing proteins for immunosuppression. Here we show the role of a dimerized TIR domain platform for the suppression as well as for the activation of MyD88 signaling pathway. Coiled-coil dimerization domain, present in many bacterial TCPs, potently augments suppression of TLR/IL-1R signaling. The addition of a strong coiled-coil dimerization domain conferred the superior inhibition against the wide spectrum of TLRs and prevented the constitutive activation by a dimeric TIR platform. We propose a molecular model of MyD88-mediated signaling based on the dimerization of TIR domains as the limiting step.  相似文献   

6.
Toll-like receptors (TLRs) play a central role in host defense by inducing inflammatory and adaptive immune responses following infection. Drugs that target TLRs are of considerable interest as potential inflammatory regulators, vaccine adjuvants, and novel immunotherapeutics. TLR2, in cooperation with either TLR1 or TLR6, mediates responses to a wide variety of microbial products as well as products of host tissue damage. In an effort to understand the structural basis of TLR2 recognition and uncover novel TLR2 agonists, a synthetic chemical library of 24,000 compounds was screened using an IL-8-driven luciferase reporter in cells expressing these human receptors. The screening yielded several novel TLR2-dependent activators that utilize TLR1, TLR6, or both as co-receptors. These novel small molecule compounds are aromatic in nature and structurally unrelated to any known TLR2 agonists. The three most potent compounds do not exhibit synergistic activity, nor do they act as pseudoantagonists toward natural TLR2 activators. Interestingly, two of the compounds exhibit species specificity and are inactive toward murine peritoneal macrophages. Mutational analysis reveals that although the central extracellular region of TLR1 is required for stimulation, there are subtle differences in the mechanism of stimulation mediated by the synthetic compounds in comparison with natural lipoprotein agonists. The three most potent compounds activate cells in the nanomolar range and stimulate cytokine production from human peripheral blood monocytes. Our results confirm the utility of high throughput screens to uncover novel synthetic TLR2 agonists that may be of therapeutic benefit.  相似文献   

7.
Toll-like receptor 4 (TLR4) is involved in activation of the innate immune response in a large number of different diseases. Despite numerous studies, the role of separate domains of TLR4 in the regulation of receptor activation is poorly understood. Replacement of the TLR4 ectodomain with LPS-binding proteins MD-2 or CD14 resulted in a robust ligand-independent constitutive activation comparable with the maximal stimulation of the receptor with LPS. The same effect was achieved by the replacement of the ectodomain with a monomeric fluorescent protein or a 24-kDa gyrase B fragment. This demonstrates an intrinsic dimerization propensity of the transmembrane and cytoplasmic domains of TLR4 and reveals a previously unknown function of the ectodomain in inhibiting spontaneous receptor dimerization. Constitutive activation was abolished by the replacement of the ectodomain by a bulkier protein ovalbumin. N-terminal deletion variants of TLR4 revealed that the smallest segment of the ectodomain that already prevents constitutive activity comprises only 90 residues (542 to 631) of the total 608 residues. We conclude that TLR4 represents a receptor with a low threshold of activation that can be rapidly activated by the release of inhibition exerted by its ectodomain. This is important for the sensitivity of TLR4 to activation by different agonists. The TLR4 ectodomain has multiple roles in enabling ligand regulated activation, providing proper localization while serving as an inhibitor to prevent spontaneous, ligand-independent dimerization.  相似文献   

8.
Proteolytic modification of pattern recognition receptors and their signaling adaptor molecules has recently emerged as an essential cellular event to regulate immune and inflammatory responses. Here we show that the TIR domain containing adaptor-inducing interferon-β (TRIF), an adaptor molecule mediating TLR3 signaling and MyD88-independent signaling of TLR4, plays an inhibitory role in TLR5-elicited responses by inducing proteolytic degradation of TLR5. TRIF overexpression in human embryonic kidney (HEK293) and human colonic epithelial (NCM460) cells abolishes the cellular protein level of TLR5, whereas it does not alter TLR5 mRNA level. Thus, TRIF overexpression dramatically suppresses flagellin/TLR5-deriven NFκB activation in NCM460 cells. TRIF-induced TLR5 protein degradation is completely inhibited in the presence of pan-caspase inhibitor (benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone), whereas several specific inhibitors against cathepsin B, reactive oxygen species, or ubiquitin-mediated proteasome activity fail to suppress this degradation. These results indicate that TRIF-induced caspase activity causes TLR5 protein degradation. In addition, we identify that the C terminus of TRIF and extracellular domain of TLR5 are required for TRIF-induced TLR5 degradation. Furthermore, TRIF-induced proteolytic degradation is extended to TLR3, TLR6, TLR7, TLR8, TLR9, and TLR10, whereas the cellular level of TLR1, TLR2, and TLR4 is not affected by TRIF overexpression. These results suggest that, in addition to mediating TLR3- or TLR4-induced signaling as an adaptor molecule, TRIF can participate in proteolytic modification of certain members of TLRs to modulate the functionality of TLRs at post-translational level. Collectively, our findings propose a potential inhibitory role of TRIF at least in regulating host-microbial communication via TLR5 in colonic epithelial cells.  相似文献   

9.
The active components of a primary pyrogenic liver abscess (PLA) Klebsiella pneumoniae in stimulating cytokine expression in macrophages are still unclear. The capsular polysaccharide (CPS) of PLA K. pneumoniae is important in determining clinical manifestations, and we have shown that it consists of repeating units of the trisaccharide (→3)-β-D-Glc-(1→4)-[2,3-(S)-pyruvate]-β-D-GlcA-(1→4)-α-L-Fuc-(1→) and has the unusual feature of extensive pyruvation of glucuronic acid and acetylation of C(2)-OH or C(3)-OH of fucose. We demonstrated that PLA K. pneumoniae CPS induces secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) by macrophages through Toll-like receptor 4 (TLR4) and that this effect was lost when pyruvation and O-acetylation were chemically destroyed. Furthermore, expression of TNF-α and IL-6 in PLA K. pneumoniae CPS-stimulated macrophages was shown to be regulated by the TLR4/ROS/PKC-δ/NF-κB, TLR4/PI3-kinase/AKT/NF-κB, and TLR4/MAPK signaling pathways.  相似文献   

10.
Toll-like receptor signaling requires interactions of the Toll/IL-1 receptor (TIR) domains of the receptor and adapter proteins. Using the mammalian protein-protein interaction trap strategy, homology modeling, and site-directed mutagenesis, we identify the interaction surfaces in the TLR4 TIR domain for the TLR4-TLR4, TLR4-MyD88 adapter-like (MAL), and TLR4-TRIF-related adapter molecule (TRAM) interaction. Two binding sites are equally important for TLR4 dimerization and adapter recruitment. In a model based on the crystal structure of the dimeric TLR10 TIR domain, the first binding site mediates TLR4-TLR4 TIR-TIR interaction. Upon dimerization, two identical second binding sites of the TLR4 TIR domain are juxtaposed and form an extended binding platform for both MAL and TRAM. In our mammalian protein-protein interaction trap assay, MAL and TRAM compete for binding to this platform. Our data suggest that adapter binding can stabilize the TLR4 TIR dimerization.  相似文献   

11.
The innate immune receptor Toll-like receptor 3 (TLR3) can be present on the surface of the plasma membranes of cells and in endolysosomes. The Unc93b1 protein has been reported to facilitate localization of TLR7 and 9 and is required for TLR3, -7, and -9 signaling. We demonstrate that siRNA knockdown of Unc93b1 reduced the abundance of TLR3 on the cell surface without altering total TLR3 accumulation. In addition, siRNA to Unc93b1 reduced the secretion of the TLR3 ectodomain (T3ECD) into the cell medium. Furthermore, two human single nucleotide polymorphisms that affected herpesvirus and influenza virus encephalopathy as well as a natural isoform generated by alternative splicing were found to be impaired for T3ECD secretion and decreased the abundance of TLR3 on the cell surface. The locations of the SNP P554S and the deletion in the isoform led to the identification of a loop in the TLR3 ectodomain that is required for secretion and a second whose presence decreased secretion. Finally, a truncated protein containing the N-terminal 10 leucine-rich repeats of T3ECD was sufficient for secretion in an Unc93b1-dependent manner.  相似文献   

12.
13.
Innate immune response after transient ischemia is the most common cause of myocardial inflammation and may contribute to injury, yet the detailed signaling mechanisms leading to such a response are not well understood. Herein we tested the hypothesis that myocardial ischemia activates interleukin receptor-associated kinase-1 (IRAK-1), a kinase critical for the innate immune signaling such as that of Toll-like receptors (TLRs), via a mechanism that involves heat shock proteins (HSPs) and TLRs. Coronary artery occlusion induced a rapid myocardial IRAK-1 activation within 30 min in wild-type (WT), TLR2(-/-), or Trif(-/-) mice, but not in TLR4(def) or MyD88(-/-) mice. HSP60 protein was markedly increased in serum or in perfusate of isolated heart following ischemia/reperfusion (I/R). In vitro, recombinant HSP60 induced IRAK-1 activation in cells derived from WT, TLR2(-/-), or Trif(-/-) mice, but not from TLR4(def) or MyD88(-/-) mice. Both myocardial ischemia- and HSP60-induced IRAK-1 activation was abolished by anti-HSP60 antibody. Moreover, HSP60 treatment of cardiomyocytes (CMs) led to marked activation of caspase-8 and -3, but not -9. Expression of dominant-negative mutant of Fas-associated death domain protein or a caspase-8 inhibitor completely blocked HSP60-induced caspase-8 activation, suggesting that HSP60 likely activates an apoptotic program via the death-receptor pathway. In vivo, I/R-induced myocardial apoptosis and cytokine expression were significantly attenuated in TLR4(def) mice or in WT mice treated with anti-HSP60 antibody compared with WT controls. Taken together, the current study demonstrates that myocardial ischemia activates an innate immune signaling via HSP60 and TLR4, which plays an important role in mediating apoptosis and inflammation during I/R.  相似文献   

14.
MyD88 is an essential adaptor molecule for Toll-like receptors (TLRs) and interleukin (IL)-1 receptor. MyD88 is thought to be present as condensed forms or aggregated structures in the cytoplasm, although the reason has not yet been clear. Here, we show that endogenous MyD88 is present as small speckle-like condensed structures, formation of which depends on MyD88 dimerization. In addition, formation of large aggregated structures is related to cytoplasmic accumulation of sequestosome 1 (SQSTM1; also known as p62) and histone deacetylase 6 (HDAC6), which are involved in accumulation of polyubiquitinated proteins. A gene knockdown study revealed that SQSTM1 and HDAC6 were required for MyD88 aggregation and exhibited a suppressive effect on TLR ligand-induced expression of IL-6 and NOS2 in RAW264.7 cells. SQSTM1 and HDAC6 were partially involved in suppression of several TLR4-mediated signaling events, including activation of p38 and JNK, but they hardly affected degradation of IκBα (inhibitor of nuclear factor κB). Biochemical induction of MyD88 oligomerization induced recruitment of SQSTM1 and HDAC6 to the MyD88-TRAF6 signaling complex. Repression of SQSTM1 and HDAC6 enhanced formation of the MyD88-TRAF6 complex and conversely decreased interaction of the ubiquitin-specific negative regulator CYLD with the complex. Furthermore, ubiquitin-binding regions on SQSTM1 and HDAC6 were essential for MyD88 aggregation but were not required for interaction with the MyD88 complex. Thus, our study reveals not only that SQSTM1 and HDAC6 are important determinants of aggregated localization of MyD88 but also that MyD88 activates a machinery of polyubiquitinated protein accumulation that has a modulatory effect on MyD88-dependent signal transduction.  相似文献   

15.
Bacterial lipoproteins/lipopeptides inducing host innate immune responses are sensed by mammalian Toll-like receptor 2 (TLR2). These bacterial lipoproteins are structurally divided into two groups, diacylated or triacylated lipoproteins, by the absence or presence of an amide-linked fatty acid. The presence of diacylated lipoproteins has been predicted in low-GC content gram-positive bacteria and mycoplasmas based on the absence of one modification enzyme in their genomes; however, we recently determined triacylated structures in low-GC gram-positive Staphylococcus aureus, raising questions about the actual lipoprotein structure in other low-GC content gram-positive bacteria. Here, through intensive MS analyses, we identified a novel and unique bacterial lipoprotein structure containing an N-acyl-S-monoacyl-glyceryl-cysteine (named the lyso structure) from low-GC gram-positive Enterococcus faecalis, Bacillus cereus, Streptococcus sanguinis, and Lactobacillus bulgaricus. Two of the purified native lyso-form lipoproteins induced proinflammatory cytokine production from mice macrophages in a TLR2-dependent and TLR1-independent manner but with a different dependence on TLR6. Additionally, two other new lipoprotein structures were identified. One is the "N-acetyl" lipoprotein structure containing N-acetyl-S-diacyl-glyceryl-cysteine, which was found in five gram-positive bacteria, including Bacillus subtilis. The N-acetyl lipoproteins induced the proinflammatory cytokines through the TLR2/6 heterodimer. The other was identified in a mycoplasma strain and is an unusual diacyl lipoprotein structure containing two amino acids before the lipid-modified cysteine residue. Taken together, our results suggest the existence of novel TLR2-stimulating lyso and N-acetyl forms of lipoproteins that are conserved in low-GC content gram-positive bacteria and provide clear evidence for the presence of yet to be identified key enzymes involved in the bacterial lipoprotein biosynthesis.  相似文献   

16.
Vibrio cholerae hemolysin (HlyA) displays bipartite property while supervising macrophages (MΦ). The pore-forming toxin causes profound apoptosis within 3 h of exposure and in parallel supports activation of the defying MΦ. HlyA-induced apoptosis of MΦ remains steady for 24 h, is Toll-like receptor (TLR)-independent, and is driven by caspase-9 and caspase-7, thus involving the mitochondrial or intrinsic pathway. Cell activation is carried forward by time dependent up-regulation of varying TLRs. The promiscuous TLR association of HlyA prompted investigation, which revealed the β-prism lectin domain of HlyA simulated TLR4 up-regulation by jacalin, a plant lectin homologue besides expressing CD86 and type I cytokines TNF-α and IL-12. However, HlyA cytolytic protein domain up-regulated TLR2, which controlled CD40 for continuity of cell activation. Expression of TOLLIP before TLR2 and TLR6 abrogated TLR4, CD40, and CD86. We show that the transient expression of TOLLIP leading to curbing of activation-associated capabilities is a plausible feedback mechanism of MΦ to deploy TLR2 and prolong activation involving CD40 to encounter the HlyA cytolysin domain.  相似文献   

17.
β-Interferons (IFN-βs) represent one of the first line treatments for relapsing-remitting multiple sclerosis, slowing disease progression while reducing the frequency of relapses. Despite this, more effective, well tolerated therapeutic strategies are needed. Cannabinoids palliate experimental autoimmune encephalomyelitis (EAE) symptoms and have therapeutic potential in MS patients although the precise molecular mechanism for these effects is not understood. Toll-like receptor (TLR) signaling controls innate immune responses and TLRs are implicated in MS. Here we demonstrate that the synthetic cannabinoid R(+)WIN55,212-2 is a novel regulator of TLR3 and TLR4 signaling by inhibiting the pro-inflammatory signaling axis triggered by TLR3 and TLR4, whereas selectively augmenting TLR3-induced activation of IFN regulatory factor 3 (IRF3) and expression of IFN-β. We present evidence that R(+)WIN55,212-2 strongly promotes the nuclear localization of IRF3. The potentiation of IFN-β expression by R(+)WIN55,212-2 is critical for manifesting its protective effects in the murine MS model EAE as evidenced by its reduced therapeutic efficacy in the presence of an anti-IFN-β antibody. R(+)WIN55,212-2 also induces IFN-β expression in MS patient peripheral blood mononuclear cells, whereas down-regulating inflammatory signaling in these cells. These findings identify R(+)WIN55,212-2 as a novel regulator of TLR3 signaling to IRF3 activation and IFN-β expression and highlights a new mechanism that may be open to exploitation in the development of new therapeutics for the treatment of MS.  相似文献   

18.
19.
We have previously shown that a single nucleotide polymorphism rs11536889 in the 3'-untranslated region (UTR) of TLR4 was associated with periodontitis. In this study the effects of this single nucleotide polymorphism on Toll-like receptor (TLR) 4 expression were investigated. Monocytes from subjects with the C/C genotype expressed higher levels of TLR4 on their surfaces than those from subjects with the other genotypes. Peripheral blood mononuclear cells (PBMCs) from the C/C and G/C subjects secreted higher levels of IL-8 in response to lipopolysaccharide (LPS), a TLR4 ligand, than the cells from the G/G subjects. However, there was no significant difference in TLR4 mRNA levels in PBMCs from the subjects with each genotype. After stimulation with tripalmitoylated CSK(4) (Pam(3)CSK(4)), TLR4 mRNA levels increased in PBMCs from both the C/C and G/G subjects, whereas TLR4 protein levels increased in PBMCs from the C/C but not G/G subjects. Transient transfection of a series of chimeric luciferase constructs revealed that a fragment of 3'-UTR containing rs11536889 G allele, but not C allele, suppressed luciferase activity induced by LPS or IL-6. Two microRNAs, hsa-miR-1236 and hsa-miR-642a, were predicted to bind to rs11536889 G allele. Inhibition of these microRNAs reversed the suppressed luciferase activity. These microRNA inhibitors also up-regulated endogenous TLR4 protein on THP-1 cells (the G/G genotype) after LPS stimulation. Furthermore, mutant microRNAs that bind to the C allele inhibited the luciferase activity of the construct containing the C allele. These results indicate that genetic variation of rs11536889 contributes to translational regulation of TLR4, possibly by binding to microRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号