首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: Identifying candidate genes associated with a given phenotype or trait is an important problem in biological and biomedical studies. Prioritizing genes based on the accumulated information from several data sources is of fundamental importance. Several integrative methods have been developed when a set of candidate genes for the phenotype is available. However, how to prioritize genes for phenotypes when no candidates are available is still a challenging problem. RESULTS: We develop a new method for prioritizing genes associated with a phenotype by Combining Gene expression and protein Interaction data (CGI). The method is applied to yeast gene expression data sets in combination with protein interaction data sets of varying reliability. We found that our method outperforms the intuitive prioritizing method of using either gene expression data or protein interaction data only and a recent gene ranking algorithm GeneRank. We then apply our method to prioritize genes for Alzheimer's disease. AVAILABILITY: The code in this paper is available upon request.  相似文献   

2.
GoSurfer   总被引:2,自引:0,他引:2  
The analysis of complex patterns of gene regulation is central to understanding the biology of cells, tissues and organisms. Patterns of gene regulation pertaining to specific biological processes can be revealed by a variety of experimental strategies, particularly microarrays and other highly parallel methods, which generate large datasets linking many genes. Although methods for detecting gene expression have improved substantially in recent years, understanding the physiological implications of complex patterns in gene expression data is a major challenge. This article presents GoSurfer, an easy-to-use graphical exploration tool with built-in statistical features that allow a rapid assessment of the biological functions represented in large gene sets. GoSurfer takes one or two list(s) of gene identifiers (Affymetrix probe set ID) as input and retrieves all the Gene Ontology (GO) terms associated with the input genes. GoSurfer visualises these GO terms in a hierarchical tree format. With GoSurfer, users can perform statistical tests to search for the GO terms that are enriched in the annotations of the input genes. These GO terms can be highlighted on the GO tree. Users can manipulate the GO tree in various ways and interactively query the genes associated with any GO term. The user-generated graphics can be saved as graphics files, and all the GO information related to the input genes can be exported as text files. AVAILABILITY: GoSurfer is a Windows-based program freely available for noncommercial use and can be downloaded at http://www.gosurfer.org. Datasets used to construct the trees shown in the figures in this article are available at http://www.gosurfer.org/download/GoSurfer.zip.  相似文献   

3.

Background

For analyzing these gene expression data sets under different samples, clustering and visualizing samples and genes are important methods. However, it is difficult to integrate clustering and visualizing techniques when the similarities of samples and genes are defined by PCC(Person correlation coefficient) measure.

Results

Here, for rare samples of gene expression data sets, we use MG-PCC (mini-groups that are defined by PCC) algorithm to divide them into mini-groups, and use t-SNE-SSP maps to display these mini-groups, where the idea of MG-PCC algorithm is that the nearest neighbors should be in the same mini-groups, t-SNE-SSP map is selected from a series of t-SNE(t-statistic Stochastic Neighbor Embedding) maps of standardized samples, and these t-SNE maps have different perplexity parameter. Moreover, for PCC clusters of mass genes, they are displayed by t-SNE-SGI map, where t-SNE-SGI map is selected from a series of t-SNE maps of standardized genes, and these t-SNE maps have different initialization dimensions. Here, t-SNE-SSP and t-SNE-SGI maps are selected by A-value, where A-value is modeled from areas of clustering projections, and t-SNE-SSP and t-SNE-SGI maps are such t-SNE map that has the smallest A-value.

Conclusions

From the analysis of cancer gene expression data sets, we demonstrate that MG-PCC algorithm is able to put tumor and normal samples into their respective mini-groups, and t-SNE-SSP(or t-SNE-SGI) maps are able to display the relationships between mini-groups(or PCC clusters) clearly. Furthermore, t-SNE-SS(m)(or t-SNE-SG(n)) maps are able to construct independent tree diagrams of the nearest sample(or gene) neighbors, where each tree diagram is corresponding to a mini-group of samples(or genes).
  相似文献   

4.
DiscoverySpace: an interactive data analysis application   总被引:1,自引:0,他引:1       下载免费PDF全文
DiscoverySpace is a graphical application for bioinformatics data analysis. Users can seamlessly traverse references between biological databases and draw together annotations in an intuitive tabular interface. Datasets can be compared using a suite of novel tools to aid in the identification of significant patterns. DiscoverySpace is of broad utility and its particular strength is in the analysis of serial analysis of gene expression (SAGE) data. The application is freely available online.  相似文献   

5.
One of the goals of gene expression experiments is the identification of differentially expressed genes among populations that could be used as markers. For this purpose, we implemented a model-free Bayesian approach in a user-friendly and freely available web-based tool called BayBoots. In spite of a common misunderstanding that Bayesian and model-free approaches are incompatible, we merged them in the BayBoots implementation using the Kernel density estimator and Rubin 's Bayesian Bootstrap. We used the Bayes error rate (BER) instead of the usual P values as an alternative statistical index to rank a class marker's discriminative potential, since it can be visualized by a simple graphical representation and has an intuitive interpretation. Subsequently, Bayesian Bootstrap was used to assess BER 's credibility. We tested BayBoots on microarray data to look for markers for Trypanosoma cruzi strains isolated from cardiac and asymptomatic patients. We found that the three most frequently used methods in microarray analysis: t-test, non-parametric Wilcoxon test and correlation methods, yielded several markers that were discarded by a time-consuming visual check. On the other hand, the BayBoots graphical output and ranking was able to automatically identify markers for which classification performance was consistent. BayBoots is available at: http://www.vision.ime.usp.br/~rvencio/BayBoots.  相似文献   

6.
MOTIVATION: Gene expression profiling experiments in cell lines and animal models characterized by specific genetic or molecular perturbations have yielded sets of genes annotated by the perturbation. These gene sets can serve as a reference base for interrogating other expression datasets. For example, a new dataset in which a specific pathway gene set appears to be enriched, in terms of multiple genes in that set evidencing expression changes, can then be annotated by that reference pathway. We introduce in this paper a formal statistical method to measure the enrichment of each sample in an expression dataset. This allows us to assay the natural variation of pathway activity in observed gene expression data sets from clinical cancer and other studies. RESULTS: Validation of the method and illustrations of biological insights gleaned are demonstrated on cell line data, mouse models, and cancer-related datasets. Using oncogenic pathway signatures, we show that gene sets built from a model system are indeed enriched in the model system. We employ ASSESS for the use of molecular classification by pathways. This provides an accurate classifier that can be interpreted at the level of pathways instead of individual genes. Finally, ASSESS can be used for cross-platform expression models where data on the same type of cancer are integrated over different platforms into a space of enrichment scores. AVAILABILITY: Versions are available in Octave and Java (with a graphical user interface). Software can be downloaded at http://people.genome.duke.edu/assess.  相似文献   

7.
Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA) introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR) measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial), and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA) for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package.  相似文献   

8.
VizStruct: exploratory visualization for gene expression profiling   总被引:2,自引:0,他引:2  
MOTIVATION: DNA arrays provide a broad snapshot of the state of the cell by measuring the expression levels of thousands of genes simultaneously. Visualization techniques can enable the exploration and detection of patterns and relationships in a complex data set by presenting the data in a graphical format in which the key characteristics become more apparent. The dimensionality and size of array data sets however present significant challenges to visualization. The purpose of this study is to present an interactive approach for visualizing variations in gene expression profiles and to assess its usefulness for classifying samples. RESULTS: The first Fourier harmonic projection was used to map multi-dimensional gene expression data to two dimensions in an implementation called VizStruct. The visualization method was tested using the differentially expressed genes identified in eight separate gene expression data sets. The samples were classified using the oblique decision tree (OC1) algorithm to provide a procedure for visualization-driven classification. The classifiers were evaluated by the holdout and the cross-validation techniques. The proposed method was found to achieve high accuracy. AVAILABILITY: Detailed mathematical derivation of all mapping properties as well as figures in color can be found as supplementary on the web page http://www.cse.buffalo.edu/DBGROUP/bioinformatics/supplementary/vizstruct. All programs were written in Java and Matlab and software code is available by request from the first author.  相似文献   

9.
MOTIVATION: Association pattern discovery (APD) methods have been successfully applied to gene expression data. They find groups of co-regulated genes in which the genes are either up- or down-regulated throughout the identified conditions. These methods, however, fail to identify similarly expressed genes whose expressions change between up- and down-regulation from one condition to another. In order to discover these hidden patterns, we propose the concept of mining co-regulated gene profiles. Co-regulated gene profiles contain two gene sets such that genes within the same set behave identically (up or down) while genes from different sets display contrary behavior. To reduce and group the large number of similar resulting patterns, we propose a new similarity measure that can be applied together with hierarchical clustering methods. RESULTS: We tested our proposed method on two well-known yeast microarray data sets. Our implementation mined the data effectively and discovered patterns of co-regulated genes that are hidden to traditional APD methods. The high content of biologically relevant information in these patterns is demonstrated by the significant enrichment of co-regulated genes with similar functions. Our experimental results show that the Mining Attribute Profile (MAP) method is an efficient tool for the analysis of gene expression data and competitive with bi-clustering techniques.  相似文献   

10.
Gene Set Expression Comparison kit for BRB-ArrayTools   总被引:1,自引:0,他引:1  
  相似文献   

11.
《Fly》2013,7(2):151-156
In modern functional genomics registration techniques are used to construct reference gene expression patterns and create a spatiotemporal atlas of the expression of all the genes in a network. In this paper we present a software package called GCPReg, which can be used to register the expression patterns of segmentation genes in the early Drosophila embryo. The key task which this package performs is the extraction of spatially localized characteristic features of expression patterns. To facilitate this task, we have developed an easy-to-use interactive graphical interface. We describe GCPReg usage and demonstrate how this package can be applied to register gene expression patterns in wild-type and mutants. GCPReg has been designed to operate on a UNIX platform and is freely available via the Internet at http://urchin.spbcas.ru/downloads/GCPReg/GCPReg.htm.  相似文献   

12.
13.
MOTIVATION: Genome projects have produced large amounts of data on the sequences of new genes whose functions are as yet unknown. The functions of new genes are usually inferred by comparing their sequences with those of known genes, but evaluation of the sequence homology of individual genes does not make the most of the available sequence information. Therefore, new methods and tools for extracting more biological information from homology searches would be advantageous. RESULTS: We have developed a computational tool, ORI-GENE, to analyze the results of sequence homology searches from the perspective of the evolution of selected sets of new genes. ORI-GENE has a graphical interface and accomplishes two important tasks: first, based on the output of homology searches, it identifies species with similar genes and displays their pattern of distribution on the phylogenetic tree. This function enables one to infer the way in which a given gene may have propagated among species over time. Second, from the distribution patterns, it predicts the point at which a given gene may have been first acquired (i.e. its 'origin'), then classifies the gene on that basis. Because it makes use of available evolutionary information to show the way in which genes cluster among species, ORI-GENE should be an effective tool for the screening and classification of new genes revealed by genome analysis. AVAILABILITY: ORI-GENE is retrievable via the Internet at: http://www.rtc.riken.go.jp/jouhou/ORI-GENE.  相似文献   

14.
Multivariate measurement of gene expression relationships   总被引:5,自引:0,他引:5  
  相似文献   

15.
Mining gene expression databases for association rules   总被引:16,自引:0,他引:16  
  相似文献   

16.
17.
18.
MOTIVATION: With the emergence of genome-wide expression profiling data sets, the guilt by association (GBA) principle has been a cornerstone for deriving gene functional interpretations in silico. Given the limited success of traditional methods for producing clusters of genes with great amounts of functional similarity, new data-mining algorithms are required to fully exploit the potential of high-throughput genomic approaches. RESULTS: Ontology-based pattern identification (OPI) is a novel data-mining algorithm that systematically identifies expression patterns that best represent existing knowledge of gene function. Instead of relying on a universal threshold of expression similarity to define functionally related groups of genes, OPI finds the optimal analysis settings that yield gene expression patterns and gene lists that best predict gene function using the principle of GBA. We applied OPI to a publicly available gene expression data set on the life cycle of the malarial parasite Plasmodium falciparum and systematically annotated genes for 320 functional categories based on current Gene Ontology annotations. An ontology-based hierarchical tree of the 320 categories provided a systems-wide biological view of this important malarial parasite.  相似文献   

19.
20.
The amount of data produced by molecular biologists is growing at an exponential rate. Some of the fastest growing sets of data are measurements of gene expression, comparable in quantity only to gene sequences and the vast biological literature. Both gene expression data and sequence data offer hints as to the functions of thousands of newly discovered genes, but neither give complete answers. Therefore, much effort is being focused on integrating these large data sets and combining them with all available functional data to draw inferences about the functions of uncharacterised genes. This review discusses the most pertinent functional data for genome-wide functional inference and describes several methods by which these disparate data types are being integrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号