共查询到20条相似文献,搜索用时 15 毫秒
1.
Succinic semialdehyde dehydrogenase (EC 1.2.1.16) was purified 74-fold from wheat grain (Triticum durum Desf.). The enzyme appears quite specific for succinic semialdehyde (SSA). Both NAD and NADP support the oxidation of the substrate, but the former is 7-fold more active than the latter. The optimum pH for activity is around 9; the enzyme is stable in the pH range 6–9 and retains its whole activity up to 40°C. The enzyme activity is strongly dependent on the presence of mercaptoethanol, other thiol compounds being much less effective. Kinetic data support the formation of a ternary complex between enzyme, substrate and coenzyme. The K
m for SSA and for NAD are 7.4x10-6 M and 2x10-4 M, respectively. The molecular weight of the enzyme protein was estimated by gel-filtration to be about 130,000.Abbreviations GABA
-aminobutyric acid
- GABA-T
-aminobutyric acid transaminase
- ME
mercaptoethanol
- SSA
succinic semialdehyde
- SSA-DH
succinic semialdehyde dehydrogenase 相似文献
2.
In sea urchin embryos, the initial animal-vegetal (AV) axis is specified during oogenesis but the mechanism is largely unknown. By using chemical reagents such as lithium, it is possible to shift the principal embryonic territories toward a vegetal fate. We have investigated the possibility of obtaining the same morphological effect as with lithium by utilizing Fabs against the maternal Bep4 protein that is localized in the animal part of Paracentrotus lividus egg and embryos. Incubation of fertilized eggs with Fabs against Bep4 protein causes exogastrulation at 48 h of development of P. lividus embryos, similar to embryos treated with lithium. This vegetalizing effect was ascertained by utilizing territorial markers such as EctoV, EndoI, and Ig8. The effect of Fabs against Bep4 on gene expression was observed by monitoring spatial expression of the hatching enzyme gene. A decreased expression domain compared to its normal spatial distribution was detected and this effect was again comparable to those obtained with lithium treatment. Association of Bep4 with a cadherin was demonstrated by immunoprecipitation and immunostaining experiments, and an involvement in cell signaling is discussed. In addition, treatment of embryos with anti-Bep4 Fabs causes an enhancement in the level and an expansion in the pattern of nuclear beta-catenin. Moreover, this treatment also provokes a decrease of beta-catenin in adherens junctions. Together, these data indicate that anti-Bep4 Fabs provoke a shift of the animal-vegetal boundary toward the animal pole and suggest an active role of Bep4 protein in patterning along the AV axis. 相似文献
3.
The enzyme succinic semialdehyde dehydrogenase from pig brain has been 2000-fold purified by a combination of DEAE-cellulose, hydroxyapatite, and AMP-Sepharose chromatography. This preparation has a molecular weight of 160,000 and a specific activity of 5.3 mumol/min.mg at 25 degrees C. The inhibition of succinic semialdehyde dehydrogenase by carbonyl compounds, i.e. P-pyridoxal and o-phthalaldehyde was investigated in detail. The enzyme is reversible, inhibited by preincubation with P-pyridoxal (mixing molar ratio, 300:1) at either 25 degrees or 37 degrees C. Reduction with NaBH1 results in the incorporation of approximately 4 mol of P-pyridoxyl residues/mol of enzyme. NAD+ protects the enzyme against inactivation by P-pyridoxal, whereas the substrate succinic semialdehyde failed to prevent the reaction of P-pyridoxal with lysine residues of the protein. The binding of approximately 10 mol of o-phthalaldehyde/mol of enzyme results in irreversible loss of catalytic activity. The reaction is fast and easily monitored by absorption and fluorescence spectroscopy. 相似文献
4.
Stomatal development and patterning in Arabidopsis leaves 总被引:1,自引:0,他引:1
The functional unit for gas exchange between plants and the atmosphere is the stomatal complex, an epidermal structure composed of two guard cells, which delimit a stomatal pore, and their subsidiary cells. In the present work, we define the basic structural unit formed in Arabidopsis thaliana during leaf development, the anisocytic stomatal complex. We perform a cell lineage analysis by transposon excision founding that at least a small percentage of stomatal complexes are unequivocally non-clonal. We also describe the three-dimensional pattern of stomata in the Arabidopsis leaf. In the epidermal plane, subsidiary cells of most stomatal complexes contact the subsidiary cells of immediately adjacent complexes. This minimal distance between stomatal complexes allows each stoma to be circled by a full complement of subsidiary cells, with which guard cells can exchange water and ions in order to open or to close the pore. In the radial plane, stomata (and their precursors, the meristemoids) are located at the junctions of several mesophyll cells. This meristemoid patterning may be a consequence of signals that operate along the radial axis of the leaf, which establish meristemoid differentiation precisely at these places. Since stomatal development is basipetal, these radially propagated signals may be transmitted in the axial direction, thus guiding stomatal development through the basal end of the leaf. 相似文献
5.
Polar transport of auxin has been identified as a central element of pattern formation. The polarity of auxin transport is linked to the cycling of pin-formed proteins, a process that is related to actomyosin-dependent vesicle traffic. To get insight into the role of actin for auxin transport, we used patterned cell division to monitor the polarity of auxin fluxes. We show that cell division in the tobacco (Nicotiana tabacum L. cv Bright-Yellow 2) cell line is partially synchronized and that this synchrony can be perturbed by inhibition of auxin transport by 1-N-naphthylphthalamic acid. To address the role of actin in this synchrony, we induced a bundled configuration of actin by overexpressing mouse talin. The bundling of actin impairs the synchrony of cell division and increases the sensitivity to 1-N-naphthylphthalamic acid. Addition of the polarly transported auxins indole-3-acetic acid and 1-naphthyl acetic acid (but not 2,4-dichlorophenoxyacetic acid) restored both the normal organization of actin and the synchrony of cell division. This study suggests that auxin controls its own transport by changing the state of actin filaments. 相似文献
6.
7.
The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning 下载免费PDF全文
The normal development of lateral organs of the shoot requires the simultaneous repression of meristem-specific genes and the activation of organ-specific genes. ASYMMETRIC LEAVES2 (AS2) is required for the development of normal leaf shape and for the repression of KNOX genes in the leaf. AS2 is a member of the recently identified, plant-specific LATERAL ORGAN BOUNDARIES (LOB)–domain gene family. Expression of AS2 at high levels resulted in repression of the KNOX homeobox genes BREVIPEDICELLUS, KNAT2, and KNAT6 but not of the related SHOOT MERISTEMLESS gene. Overexpression of AS2 also led to a perturbation of normal adaxial-abaxial asymmetry in lateral organs, resulting in the replacement of abaxial cell types with adaxial cell types. These results indicate that AS2 is sufficient to induce adaxial cell fate and repress KNOX gene expression. 相似文献
8.
9.
NADP-dependent isocitrate dehydrogenase (NADP-ICDH) catalyses the production of NADPH, which is an essential component in the cellular homeostasis. In Arabidopsis, the kinetic parameters (K m and V max) of cytosolic NADP-ICDH were different in leaves and roots. In vitro applied H2O2 did not affect the NADP-ICDH activity in either organ, however, the reduced glutathione inhibited the activity in leaves but not in roots. On the other hand, S-nitrosoglutathione (a NO donor) and peroxynitrite depressed NADP-ICDH activity in leaves and roots. 相似文献
10.
Cell lineage has been used to explain the stomatal distribution in several plant species. We have used transgenic plants carrying a 35SGUS::Ac construct that produces clonal sectors to analyze the possible role of cell lineage during the establishment of stomatal patterning in Arabidopsis leaves. The analysis of sectors ranging from two to eighteen cells supports the conclusion that most stomatal complexes derive from a single and immediate precursor cell through a stereotyped pattern of three unequal cell divisions followed by a final equal one. In addition, it shows that the successive cell divisions take place at a constant angle (approximately 60 degrees ) with respect to the previous one. Interestingly, this angular dimension shifts from 60 degrees to 0 degrees in the last cell division that gives rise to the stoma. These sectors also reveal the development of both clockwise and counterclockwise patterns of cell divisions during stomatal development in approximately equal numbers. Our clonal analysis indicates that cell divisions involved in the development of stomatal complexes are probably the last ones contributing to epidermal growth and development. Finally, the stereotyped pattern of cell divisions that culminates in the formation of stomatal complexes indicates that cell lineage plays a very important role during stomatal pattern establishment. 相似文献
11.
M P González M J Oset-Gasque A Gimenez Solves S Ca?adas 《Comparative biochemistry and physiology. B, Comparative biochemistry》1987,86(3):489-492
In the present paper we report the presence of succinic semialdehyde dehydrogenase (SSADH) in bovine adrenal medulla and blood platelets. Both enzymes present some analogies with the brain enzyme in terms of cofactor requirements, optimal pH, mitochondrial localizaton and inhibition by AMP. However, the activity of the platelet enzyme is 100 times lower than that of the brain and affinities of both enzymes for their specific substrate succinic semialdehyde and NAD are different. The presence of SSADH in adrenal medulla and blood platelets allows us to confirm the presence of a complete GABA bypass in these tissues, where the neurotransmitter could have important regulator functions. 相似文献
12.
13.
The Arabidopsis BRAHMA chromatin-remodeling ATPase is involved in repression of seed maturation genes in leaves 总被引:1,自引:0,他引:1
Tang X Hou A Babu M Nguyen V Hurtado L Lu Q Reyes JC Wang A Keller WA Harada JJ Tsang EW Cui Y 《Plant physiology》2008,147(3):1143-1157
Synthesis and accumulation of seed storage proteins (SSPs) is an important aspect of the seed maturation program. Genes encoding SSPs are specifically and highly expressed in the seed during maturation. However, the mechanisms that repress the expression of these genes in leaf tissue are not well understood. To gain insight into the repression mechanisms, we performed a genetic screen for mutants that express SSPs in leaves. Here, we show that mutations affecting BRAHMA (BRM), a SNF2 chromatin-remodeling ATPase, cause ectopic expression of a subset of SSPs and other embryogenesis-related genes in leaf tissue. Consistent with the notion that such SNF2-like ATPases form protein complexes in vivo, we observed similar phenotypes for mutations of AtSWI3C, a BRM-interacting partner, and BSH, a SNF5 homolog and essential SWI/SNF subunit. Chromatin immunoprecipitation experiments show that BRM is recruited to the promoters of a number of embryogenesis genes in wild-type leaves, including the 2S genes, expressed in brm leaves. Consistent with its role in nucleosome remodeling, BRM appears to affect the chromatin structure of the At2S2 promoter. Thus, the BRM-containing chromatin-remodeling ATPase complex involved in many aspects of plant development mediates the repression of SSPs in leaf tissue. 相似文献
14.
Monounsaturated alkenes are present in the cuticular waxes of diverse plants and are thought to play important roles in their interactions with abiotic and biotic factors. Arabidopsis (Arabidopsis thaliana) leaf wax has been reported to contain alkenes; however, their biosynthesis has not been investigated to date. Here, we found that these alkenes have mainly ω-7 and ω-9 double bonds in characteristically long hydrocarbon chains ranging from C33 to C37. A screening of desaturase-deficient mutants showed that a single desaturase belonging to the acyl-CoA desaturase (ADS) family, previously reported as ADS4.2, was responsible for introducing double bonds en route to the wax alkenes. ADS4.2 was highly expressed in young leaves, especially in trichomes, where the alkenes are known to accumulate. The enzyme showed strong activity on acyl substrates longer than C32 and ω-7 product regio-specificity when expressed in yeast (Saccharomyces cerevisiae). Its endoplasmic reticulum localization further confirmed that ADS4.2 has access to very-long-chain fatty acyl-CoA substrates. The upstream biosynthesis pathways providing substrates to ADS4.2 and the downstream reactions forming the alkene products in Arabidopsis were further clarified by alkene analysis of mutants deficient in other wax biosynthesis genes. Overall, our results show that Arabidopsis produces wax alkenes through a unique elongation–desaturation pathway, which requires the participation of ADS4.2.Arabidopsis produces cuticular alkenes through a unique elongation–desaturation pathway requiring the acyl-CoA desaturase ADS4.2. 相似文献
15.
Abstract Klebsiella pneumoniae M5a1 grows readily on two compounds, 4-hydroxyphenylacetate and 4-aminobutyrate, whose catabolism produces succinic semialdehyde. A single succinic semialdehyde dehydrogenase was detected, native molecular weight 52000, that has NAD as the preferred cofactor and is induced by succinic semialdehyde functions in the oxidation of succinic semialdehyde during growth on both 4-hydroxyphenyl-acetate and 4-aminobutyrate. This contrasts with the situation for Escherichia coli and Pseudomonas putida where two distinct forms of succinic semialdehyde dehydrogenase have been observed. 相似文献
16.
Because retinoic acid (RA) is known to affect anterior-posterior patterning in vertebrate embryos, it was questioned whether it shows similar effects in a more primitive chordate, the ascidian Halocynthia roretzi . Ascidian embryos treated with RA exhibited truncated phenotypes in a dose-dependent manner similar to the anterior truncations seen in vertebrate embryos. The most severely affected larvae possessed a round trunk without the papillae characteristic of the anterior terminal epidermis. Retinoic acid also altered the expression of HrHox-1 and Hroth in a dose-dependent manner. Expression of HrHox-1 increased, whereas expression of Hroth decreased with increasing levels of RA. In treated embryos, HrHox-1 was first expressed pan-ectodermally, then degraded in all but specific regions of the embryo. By contrast, initiation of Hroth expression was not affected, but epidermal expression was lost while expression in the neural tube narrowed toward the anterior in tail-bud embryos. These alterations in the expression of homeobox genes appear to correlate closely to the morphological defects elicited by RA treatment, suggesting broad conservation of developmental patterning mechanisms within the Phylum Chordata. 相似文献
17.
In plant and microorganisms, aspartate semialdehyde dehydrogenase (ASDH) produces the branch point intermediate between the lysine and threonine/methionine pathways. In this study, we report the first cDNA cloning, purification, and characterization of a plant ASDH. The Arabidopsis thaliana ASDH is an homodimeric enzyme composed of subunits of 36 kDa. The plant enzyme exhibited a specific activity of 26 micromol NADPH oxidized min(-1) mg(-1) of protein with a K(M) value for NADPH of 92 microM. ASDH showed cooperative behavior for aspartyl phosphate with a K(0.5) value of 37 microM. 相似文献
18.
Fibroblast growth factors (FGFs) are signals from the apical ectodermal ridge (AER) that are essential for limb pattern formation along the proximodistal (PD) axis. However, how patterning along the PD axis is regulated by AER-FGF signals remains controversial. To further explore the molecular mechanism of FGF functions during limb development, we conditionally inactivated fgf receptor 2 (Fgfr2) in the mouse AER to terminate all AER functions; for comparison, we inactivated both Fgfr1 and Fgfr2 in limb mesenchyme to block mesenchymal AER-FGF signaling. We also re-examined published data in which Fgf4 and Fgf8 were inactivated in the AER. We conclude that limb skeletal phenotypes resulting from loss of AER-FGF signals cannot simply be a consequence of excessive mesenchymal cell death, as suggested by previous studies, but also must be a consequence of reduced mesenchymal proliferation and a failure of mesenchymal differentiation, which occur following loss of both Fgf4 and Fgf8. We further conclude that chondrogenic primordia formation, marked by initial Sox9 expression in limb mesenchyme, is an essential component of the PD patterning process and that a key role for AER-FGF signaling is to facilitate SOX9 function and to ensure progressive establishment of chondrogenic primordia along the PD axis. 相似文献
19.