首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuron RPa2 ofHelix pomatia can generate rhythmic (beating) or periodic (bursting) activity. A spontaneous switch from beating to bursting activity takes place in the course of tens of minutes. Similar changes in electrical activity can be induced by the addition of the water-soluble fraction obtained from a homogenate of snail ganglia to the experimental chamber. Artificial polarization of the membrane of neuron RPa2 by asteady inward current leads to an increase in the duration of intervals between bursts and to a decrease in the number of action potentials in the burst. With an increase in amplitude of the polarizing current, action potential generation ceases completely, but generation of waves of membrane potential persists. If the voltage on the neuron membrane is clamped, periodic fluctuations of membrane current disappear. It is suggested that action potential generation by neurons RPa2 is determined by the properties of the potential-dependent conductance of its membrane, i.e., that it is endogenous in origin and can be regulated by compounds acting on the membrane. These compounds, secreted by other neurons, resemble neurotransmitters or neurohormones.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 406–412, July–August, 1981.  相似文献   

2.
The connection between an interneuron initiating pacemaker activity in the bursting RPa1 neuron and the bursting neuron itself (Pin and Gola, 1983) has been analyzed in the snail Helix pomatia. Prolonged depolarization of the interneuronal membrane produced in it a series of action potentials as well as a parallel initiation or enhancement of bursting activity in the RPa1 neuron. If the discharge in the interneuron was evoked by short current pulses of threshold amplitude, no bursting activity was seen in the RPa1 neuron. However, short stimuli delivered on the background of subthreshold depolarization of the interneuronal membrane produced bursting activity in the RPa1 neuron. Under voltage-clamp conditions a slow inward current could be recorded in the RPa1 neuronal membrane after stimulation of the interneuron with a latency of about 2 sec. Short shifts of the holding potential in the hyperpolarizing direction at the maximum of this current produced a transient outward current. Replacement of extracellular Ca2+ by Mg2+ ions, as well as addition of 1 mM CdCl2 to the external solution, prevented the response to the interneuronal stimulation in the RPa1 neuron. Electron microscopic investigation of the interneuron has shown the abundance of Golgi complexes in its cytoplasm with electron-dense granules in their vicinity. It is concluded that the connection between the interneuron and the bursting neuron is of chemical origin, based on secretion by the former of some substances which activate at least two types of ionic channels in the membrane of the RPa1 neuron.  相似文献   

3.
The effect of 70-kD protein (P70, a specific protein found in cobalt-induced epileptogenic focus of rat cerebral cortex) on membrane properties was examined in identified neurons of the snail, Euhadra peliomphala, using the pressure injection method combined with the voltage-clamp technique. In neurons that normally exhibited spontaneous regular firing, intracellular injection of P70 elicited bursting activity and a negative slope resistance (NSR) region in their current-voltage (I-V) curve in a manner corresponding to the duration of its injection. These responses were suppressed by prior injection of an antibody to P70 into the neurons, and were markedly inhibited by a reduction of extracellular Na+ ions and the anticonvulsant agent phenytoin, but not by Co(2+)-substituted Ca(2+)-free saline. In addition, intracellularly applied P70 potentiated both bursting activity and the NSR induced by a Na channel activator, veratridine. However, prior application of a saturating dose of this activator occluded the effect of P70. These results suggest that P70 elicits a Na(+)-dependent negative resistance, which may contribute to the generation of bursting activity.  相似文献   

4.
The effect of short-chain fatty acids on both ouabain-sensitive and ouabain-insensitive fractions of 22Na efflux from the neurons of Helix pomatia was studied. Fatty acids, having fewer than 10 carbon atoms in the hydrocarbon chain, increased the ouabain-sensitive 22Na efflux from the neurons, while fatty acids, having more than 9 carbon atoms, inhibited the 22Na efflux in comparison with that in normal physiological solution. All the fatty acids used had an inhibiting effect on the ouabain-insensitive 22Na efflux from the cells independent on the number of carbon atoms in the hydrocarbon chain. These studies indicate that these short-chain fatty acids can be effective modulators of both ouabain-sensitive and ouabain-insensitive fractions of Na efflux from the cells.  相似文献   

5.
The role the Na/Ca-exchange and intracellular Ca2+ released from Ca(2+)-depots in the modulatory action of Na,K-pump inhibitor ouabain on cholinosensitivity in the command neurons of Helix lucorum was studied in a cellular analogue of habituation. The integral transmembrane inward currents in LPa2, LPa3, RPa3, and RPa2 neurons were recorded in Helix lucorum ganglia preparation using two-electrode voltage clamp technique. The reduction of cholinosensitivity of a neuron was estimated as a depth of the depression of the acetylcholine-induced inward currents during the rhythmic local acetylcholine applications (with the interstimulus interval of 2-4 min) on a somatic membrane. The inhibitor of the Na/Ca-exchange benzamil (the extracellular action, 15-35 mcM) and two specific inhibitors of Ca-ATPase in the sarcoplasmic and endoplasmic reticulum, cyclopiazonic acid and thapsigargin (intracellular injection by spontaneous diffusion, 0.1 mM) prevented the modification of the depression of acetylcholine-induced current by ouabain (100 mcM) during the rhythmic application of acetylcholine. A conclusion is drawn that the inhibitor of the Na,K-pump ouabain modifies the depression of neuron cholinosensitivity in the cellular analogue of habituation via the Na/Ca-exchange and intracellular Ca2+ released from Ca2+ depots.  相似文献   

6.
The effect of intracellular iontophoretic injection of cyclic AMP on electrical activity of neurons RPa1, RPa3, LPa2, LPa3, and LPl1 in the corresponding ganglia ofHelix pomatia was investigated. Injection of cyclic AMP into neuron LPl1 was found to cause the appearance of rhythmic activity (if the neuron was originally "silent"), an increase in the frequency of spike generation (if the neuron had rhythmic activity), and a decrease in amplitude of waves of membrane potential, in the duration of the interval between bursts, and in the number of action potentials in the burst (if the neuron demonstrated bursting activity). In the remaining "silent" neurons injection of cyclic AMP led to membrane depolarization. Injection of cyclic AMP into neurons whose membrane potential was clamped at the resting potential level evoked the development of an inward transmembrane current (cyclic AMP current), the rate of rise and duration of which increased proportionally to the size and duration of the injection. Theophylline in a concentration of 1 mM led to an increase in the amplitude and duration of the cyclic AMP current by about 50%. It is concluded that a change in the cyclic AMP concentration within the nerve cell may modify the ionic permeability of its membrane and, correspondingly, its electrical activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 517–525, September–October, 1980.  相似文献   

7.
The spontaneously active Br neuron from the brain-subesophageal ganglion complex of the garden snail Helix pomatia rhythmically generates regular bursts of action potentials with quiescent intervals accompanied by slow oscillations of membrane potential. We examined the involvement of the Na(+)/K(+) pump in modulating its bursting activity by applying a static magnetic field. Whole snail brains and Br neuron were exposed to the 10-mT static magnetic field for 15?min. Biochemical data showed that Na(+)/K(+)-ATPase activity increased almost twofold after exposure of snail brains to the static magnetic field. Similarly, (31)P NMR data revealed a trend of increasing ATP consumption and increase in intracellular pH mediated by the Na(+)/H(+) exchanger in snail brains exposed to the static magnetic field. Importantly, current clamp recordings from the Br neuron confirmed the increase in activity of the Na(+)/K(+) pump after exposure to the static magnetic field, as the magnitude of ouabain's effect measured on the membrane resting potential, action potential, and interspike interval duration was higher in neurons exposed to the magnetic field. Metabolic pathways through which the magnetic field influenced the Na(+)/K(+) pump could involve phosphorylation and dephosphorylation, as blocking these processes abolished the effect of the static magnetic field.  相似文献   

8.
We studied the mechanisms of generation of pacemaker activity in identified neurons of Helix pomatia. For this purpose, we isolated the PPa2 and PPa7 neurons generating spontaneous rhythmic monomodal activity and PPa1 neuron with bursting activity. It was demonstrated that isolated PPa2 and PPa7 cells produce endogenous rhythmic activity that was not considerably modified by external application of 1 mM CdCl2. Sometimes, only low-amplitude dendritic action potentials (AP) were observed instead of generation of full-amplitude somatic AP. In contrast, isolation of the PPa1 neuron eliminated its bursting activity, but subsequent application of oxytocin on this neuron recovered such activity. This finding shows that the bursting activity of the PPa1 neuron is of an exogenous nature. Application of 1 mM CdCl2 suppressed this bursting activity, but when Cd2+ was applied against the background of superfusion of the neuron with Ringer solution containing a bursting activity-initiating neuropeptide obtained from the molluscan CNS, this blocker was incapable of suppressing the bursting activity. A blocker of the hyperpolarization-activated current (I h , H current), Cs+ (10 mM) exerted no noticeable effect on the activity of the studied neurons. Our findings allow us to conclude that the pacemaker activity is initiated within the dendritic tree of a cell and is then electrotonically spread to the soma, where full-amplitude AP are generated. It seems probable that Ca2+ ions and H current are not directly involved in generation of the pacemaker activity in the studied snail neurons.  相似文献   

9.
J. Neurochem. (2012) 122, 1145-1154. ABSTRACT: Cooling temperatures may modify action potential firing properties to alter sensory modalities. Herein, we investigated how cooling temperatures modify action potential firing properties in two groups of rat dorsal root ganglion (DRG) neurons, tetrodotoxin-sensitive (TTXs) Na(+) channel-expressing neurons and tetrodotoxin-resistant (TTXr) Na(+) channel-expressing neurons. We found that multiple action potential firing in response to membrane depolarization was suppressed in TTXs neurons but maintained or facilitated in TTXr neurons at cooling temperatures. We showed that cooling temperatures strongly inhibited A-type K(+) currents (IA) and TTXs Na(+) channels but had fewer inhibitory effects on TTXr Na(+) channels and non-inactivating K(+) currents (IK). We demonstrated that the sensitivity of A-type K(+) channels and voltage-gated Na(+) channels to cooling temperatures and their interplay determine somatosensory neuron excitability at cooling temperatures. Our results provide a putative mechanism by which cooling temperatures modify different sensory modalities including pain.  相似文献   

10.
The action of electrical stimulation of one of the pallial nerves on the sensitivity of the bursting RPa1 neuron of Helix pomatia to acetylcholine (ACh) was investigated. The depolarizing effect of ACh was significantly decreased by presynaptic stimulation. Stimulation leads also to an attenuation of the ACh-induced increase in membrane conductivity. The effect of stimulation on the ACh evoked response of the membrane was reversibly blocked by cold and was completely eliminated after long term incubation of the neuron under "in vitro" conditions.  相似文献   

11.
Rhythmic application of acetylcholine or serotonin to the local zone of somatic membrane was used to study the effect of extinction of RPa4 neuron depolarization in Helix lucorum on the excitability of adjacent chemo- and electroexcitable zone. It has been found that the extinction of response to iontophoretic application of acetylcholine to one somatic zone decreases the sensitivity of serotonin and cholinoreceptors in adjacent zones, as well as the excitability of electroexcitable membrane. The effect on the excitability of adjacent zones does not depend on the type of receptors activated rhythmically, as the extinction of RPa4 response to the repeated application of serotonin also reduces the sensitivity of adjacent cholinoreceptor zones. A cause of this effect may lie in modification of chemoreceptors and ionic channels, by intracellular regulatory systems that become activated by repeated stimulation.  相似文献   

12.
Xu J  Clancy CE 《PloS one》2008,3(4):e2056
A critical property of some neurons is burst firing, which in the hippocampus plays a primary role in reliable transmission of electrical signals. However, bursting may also contribute to synchronization of electrical activity in networks of neurons, a hallmark of epilepsy. Understanding the ionic mechanisms of bursting in a single neuron, and how mutations associated with epilepsy modify these mechanisms, is an important building block for understanding the emergent network behaviors. We present a single-compartment model of a CA3 hippocampal pyramidal neuron based on recent experimental data. We then use the model to determine the roles of primary depolarizing currents in burst generation. The single compartment model incorporates accurate representations of sodium (Na(+)) channels (Na(V)1.1) and T-type calcium (Ca(2+)) channel subtypes (Ca(V)3.1, Ca(V)3.2, and Ca(V)3.3). Our simulations predict the importance of Na(+) and T-type Ca(2+) channels in hippocampal pyramidal cell bursting and reveal the distinct contribution of each subtype to burst morphology. We also performed fast-slow analysis in a reduced comparable model, which shows that our model burst is generated as a result of the interaction of two slow variables, the T-type Ca(2+) channel activation gate and the Ca(2+)-dependent potassium (K(+)) channel activation gate. The model reproduces a range of experimentally observed phenomena including afterdepolarizing potentials, spike widening at the end of the burst, and rebound. Finally, we use the model to simulate the effects of two epilepsy-linked mutations: R1648H in Na(V)1.1 and C456S in Ca(V)3.2, both of which result in increased cellular excitability.  相似文献   

13.
Oxidative stress and down-regulated trophic factors are involved in the pathogenesis of nigrostriatal dopamine(DA)rgic neurodegeneration in Parkinson's disease. Fibroblast growth factor 9 (FGF9) is a survival factor for various cell types; however, the effect of FGF9 on DA neurons has not been studied. The antioxidant melatonin protects DA neurons against neurotoxicity. We used MPP+ to induce neuron death in vivo and in vitro and investigated the involvement of FGF9 in MPP+ intoxication and melatonin protection. We found that MPP+ in a dose- and time-dependent manner inhibited FGF9 mRNA and protein expression, and caused death in primary cortical neurons. Treating neurons in the substantia nigra and mesencephalic cell cultures with FGF9 protein inhibited the MPP+-induced cell death of DA neurons. Melatonin co-treatment attenuated MPP+-induced FGF9 down-regulation and DA neuronal apoptosis in vivo and in vitro . Co-treating DA neurons with melatonin and FGF9-neutralizing antibody prevented the protective effect of melatonin. In the absence of MPP+, the treatment of FGF9-neutralizing antibody-induced DA neuronal apoptosis whereas FGF9 protein reduced it indicating that endogenous FGF9 is a survival factor for DA neurons. We conclude that MPP+ down-regulates FGF9 expression to cause DA neuron death and that the prevention of FGF9 down-regulation is involved in melatonin-provided neuroprotection.  相似文献   

14.
A mathematical model of bursting activity in the RPa1 neuron of theHelix snail has been developed. The model allowed us to describe the processes of initiation and augmentation of the bursting activity related to transient secretion of a modulatory factor. Based on the analysis of computer simulations of various mechanisms underlying the effect of a modulating factor on the ionic membrane conductances in the bursting neuron, we suggested that modulating factor evokes a transition of non-voltage-dependent sodium channels and hyperpolarization-activated outward current channels to an active state and influences the gating of voltage-dependent sodium channels.Neirofiziologiya/Neurophysiology, Vol. 27, No. 1, pp. 11–17, January–February, 1995.  相似文献   

15.

Background

The nervous system in songbirds is an accessible system for studying vocal learning and memory in vertebrates. In the song system, the anterior forebrain pathway (AFP) is essential for song learning and the vocal motor pathway (VMP) is necessary for song production. The premotor robust nucleus of the arcopallium (RA) located in the VMP receives input from the AFP. The RA receives dopaminergic innervations from the periaqueductal gray and ventral tegmental area–substantia nigra pars compacta, but the physiological functions of this projection remain unclear. In this study, we investigated the effects of dopamine (DA) on the excitability of projection neurons (PNs) in the RA.

Methodology

We recorded the electrophysiological changes from neurons in brain slices of male adult zebra finches using a whole-cell recording technique.

Conclusions/Significance

We found that DA significantly increased the excitability of RA PNs. Furthermore, a D1-like receptor agonist increased the excitability of RA PNs, and a D1-like receptor antagonist suppressed the excitability induced by DA. However, a D2-like receptor agonist had no effect on the excitability of RA PNs. Moreover, the D2-like receptor agonist did not change the excitability induced by the D1 receptor agonist. These findings suggest that DA can significantly increase the excitability of RA PNs and that D1 receptors play the main role in regulating the excitability of RA PNs in response to DA, thereby providing direct evidence toward understanding the mechanism of DA signal mediation by its receptors to modulate the excitability of RA PNs.  相似文献   

16.
Delta-like 1 (Dlk1), a member of the Delta/Notch protein family, is expressed in the mouse ventral midbrain (VM) as early as embryonic day 11.5 (E11.5) followed by exclusive expression in tyrosine 3-monooxygenase (TH) positive neurons from E12.5 onwards. To further elucidate the yet unknown function of Dlk1 in VM neuron development, we investigated the effect of soluble Dlk1 protein as well as the intrinsic Dlk1 function in the course of VM progenitor expansion and dopaminergic (DA) neuron differentiation in vitro . Dlk1 treatment during expansion increased DA progenitor proliferation and the proportion of NR4A2+ neurons expressing TH after differentiation, whereas Dlk1 treatment during the course of DA precursor differentiation did not alter TH+ neuron counts. In contrast, silencing of endogenously expressed Dlk1 prior to DA precursor differentiation partially prevented the expression of DA neuron markers, which was not accompanied with alteration of overall or local proliferation. Due to the latter finding in combination with the absence of Dlk1 negative DA neurons in differentiated cultures, we suggest that Dlk1 expression might have a permissive effect on DA neuron differentiation in vitro . The study presented here is the first publication identifying Dlk1 effects on ventral midbrain-derived DA precursor differentiation.  相似文献   

17.
Lu TZ  Feng ZP 《PloS one》2011,6(4):e18745
The resting membrane potential of the pacemaker neurons is one of the essential mechanisms underlying rhythm generation. In this study, we described the biophysical properties of an uncharacterized channel (U-type channel) and investigated the role of the channel in the rhythmic activity of a respiratory pacemaker neuron and the respiratory behaviour in adult freshwater snail Lymnaea stagnalis. Our results show that the channel conducts an inward leak current carried by Na(+) (I(Leak-Na)). The I(Leak-Na) contributed to the resting membrane potential and was required for maintaining rhythmic action potential bursting activity of the identified pacemaker RPeD1 neurons. Partial knockdown of the U-type channel suppressed the aerial respiratory behaviour of the adult snail in vivo. These findings identified the Na(+) leak conductance via the U-type channel, likely a NALCN-like channel, as one of the fundamental mechanisms regulating rhythm activity of pacemaker neurons and respiratory behaviour in adult animals.  相似文献   

18.
The effects of intracellular signals (pHi, Na+i, Ca2+i, and the electrical membrane potential), on Na+ transport mediated by the Na+/K+ pump were investigated in the isolated Rana esculenta frog skin. In particular we focussed on pHi sensitivity since protons act as an intrinsic regulator of transepithelial Na+ transport (JNa) by a simultaneous control of the apical membrane Na+ conductance (gNa) and the basolateral membrane K+ conductance (gK). pHi changes which modify JNa, gNa and gK, do not affect the Na+ transport mediated by the pump as shown by kinetic and electrophysiological studies. In addition, no changes were observed in the number of 3H-ouabain binding sites in acid-loaded epithelia. Our attempts to modify cellular Ca2+ (by using Ca(2+)-free/EGTA Ringer solution or A23187 addition) also failed to produce any significant effects in the Na+ pump turnover rate or the number of 3H-ouabain binding sites. The Na+ pump current was found to be sensitive to the basolateral membrane potential, saturating for very positive (cell) potentials and a reversal potential of -160 mV was calculated from I-V relationships of the pump. Changes in Na+i considerably affected the Na+ pump rate. A saturating relationship was found between pump rate and Nai+ with maximal activation at Nai+ greater than 40 mmol/l; a high dependence of the pump rate and of the number of 3H-ouabain binding sites was observed in the physiological range of Nai+. We conclude that protons (in the physiological pH range) which act directly and simultaneously on the passive transport pathways (gNa and gK), have no direct effect on the Na+/K+ pump rate. After an acid load, the inhibition of JNa is primarily due to the reduction of gNa. This results in a reduction of Nai and the pump turnover rate then becomes dependent on other pathways of Na+ entry such as the basolateral membrane Na+/H+ exchanger.  相似文献   

19.
Dyatlov  V. A. 《Neurophysiology》1988,20(5):489-492
The role of calcium ions in modulating serotonin action on acetylcholine (ACh) response in nonidentified and identified (LPa3 and RPa3) neurons ofHelix pomatia was investigated using voltage-clamping at the neuronal membrane. Exposure for 1 min to serotonin prior to ACh application reduced response to ACh in neuron LPa3 and raised it in RPa3. The same two patterns of modulating ACh-induced response were produced by extracellular application of theophylline and dibutyryl c-AMP. Injecting calcium ions into neuron LPa3 led to reinforcement of ACh-induced current in the presence of serotonin, thus changing the pattern of serotonin-induced modulation of ACh response in this unit. In neuron RPa3, the same process enhanced the serotonin-induced modulating effect on ACh response but without changing the pattern of modulation, while injected EDTA produced the reverse effects. Increased intracellular concentration of calcium ions brought about a reduction in the degree of serotonin-induced modulation of ACh response in neuron RPa3. Possible reasons are discussed for changes in serotonin-induced bimodal modulation of ACh response in test neurons produced by altering the extracellular concentration of calcium ions.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 666–671, September–October, 1988.  相似文献   

20.
This study explores the effect of extracellular Ca2+ concentration ([Ca2+]o), on the intracellular Na+ concentration ([Na+]i), in frog intact hearts using nuclear magnetic resonance spectroscopy, which allows for the measurement of [Na+]i in perfused, beating hearts. Decreases in [Ca2+]o yielded marked increases in [Na+]i. A similar effect was seen during inhibition of the Na+/K+ pump and was fully reversible. This sensitivity of [Na+]i to [Ca2+]o, previously observed using microelectrodes, supports a crucial physiological role for Na+/Ca2+ exchange in frog intact, beating hearts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号