首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied in vitro cleavage/polyadenylation of precursor RNA containing herpes simplex virus type 2 poly A site sequences and have analyzed four RNA/protein complexes which form during in vitro reactions. Two complexes, A and B, form extremely rapidly and are then progressively replaced by a third complex, C which is produced following cleavage and polyadenylation of precursor RNA. Substitution of ATP with cordycepin triphosphate prevents polyadenylation and the formation of complex C however a fourth complex, D results which contains cleaved RNA. A precursor RNA lacking GU-rich downstream sequences required for efficient cleavage/polyadenylation fails to form complex B and produces a markedly reduced amount of complex A. As these GU-rich sequences are required for efficient cleavage, this establishes a relationship between complex B formation and cleavage/polyadenylation of precursor RNA in vitro. The components required for in vitro RNA processing have been separated by fractionation of the nuclear extract on Q-Sepharose and Biorex 70 columns. A Q-Sepharose fraction forms complex B but does not process RNA. Addition of a Biorex 70 fraction restores cleavage activity at the poly A site but this fraction does not appear to contribute to complex formation. Moreover, in the absence of polyethylene glycol, precursor RNA is not cleaved and polyadenylated, however, complexes A and B readily form. Thus, while complex B is necessary for in vitro cleavage and polyadenylation, it may not contain all the components required for this processing.  相似文献   

2.
3.
4.
We have devised a simple chromatographic procedure which isolates five polyadenylation factors that are required for polyadenylation of eukaryotic mRNA. The factors were separated from each other by fractionation of HeLa cell nuclear extract in two consecutive chromatographic steps. RNA cleavage at the L3 polyadenylation site of human adenovirus 2 required at least four factors. Addition of adenosine residues required only two of these factors. The fractionation procedure separates two components that are both likely to be poly(A) polymerases. The candidate poly(A) polymerases were interchangeable and participated during both RNA cleavage and adenosine addition. They were discriminated from each other by chromatographic properties, heat sensitivity and divalent cation requirement. We have compared our data with published information and have been able to correlate the activities that we have isolated to previously identified polyadenylation factors. However, we have not been able to assign one of the candidate poly(A) polymerases to a previously identified poly(A) polymerase. This simple fractionation procedure can be used for generating an in vitro reconstituted system for polyadenylation within a short period of time.  相似文献   

5.
Cleavage and polyadenylation of yeast precursor RNA require at least four functionally distinct factors (cleavage factor I [CF I], CF II, polyadenylation factor I [PF I], and poly(A) polymerase [PAP]) obtained from yeast whole cell extract. Cleavage of precursor occurs upon combination of the CF I and CF II fractions. The cleavage reaction proceeds in the absence of PAP or PF I. The cleavage factors exhibit low but detectable activity without exogenous ATP but are stimulated when this cofactor is included in the reaction. Cleavage by CF I and CF II is dependent on the presence of a (UA)6 sequence upstream of the GAL7 poly(A) site. The factors will also efficiently cleave precursor with the CYC1 poly(A) site. This RNA does not contain a UA repeat, and processing at this site is thought to be directed by a UAG...UAUGUA-type motif. Specific polyadenylation of a precleaved GAL7 RNA requires CF I, PF I, and a crude fraction containing PAP activity. The PAP fraction can be replaced by recombinant PAP, indicating that this enzyme is the only factor in this fraction needed for the reconstituted reaction. The poly(A) addition step is also dependent on the UA repeat. Since CF I is the only factor necessary for both cleavage and poly(A) addition, it is likely that this fraction contains a component which recognizes processing signals located upstream of the poly(A) site. The initial separation of processing factors in yeast cells suggests both interesting differences from and similarities to the mammalian system.  相似文献   

6.
Extracts from HeLa cell nuclei assemble RNAs containing the adenovirus type 2 L3 polyadenylation site into a number of rapidly sedimenting heterodisperse complexes. Briefly treating reaction mixtures prior to sedimentation with heparin reveals a core 25S assembly formed with substrate RNA but not an inactive RNA containing a U----C mutation in the AAUAAA hexanucleotide sequence. The requirements for assembly of this heparin-stable core complex parallel those for cleavage and polyadenylation in vitro, including a functional hexanucleotide, ATP, and a uridylate-rich tract downstream of the cleavage site. The AAUAAA and a downstream U-rich element are resistant in the assembly to attack by RNase H. The poly(A) site between the two protected elements is accessible, but is attacked more slowly than in naked RNA, suggesting that a specific factor or secondary structure is located nearby. The presence of a factor bound to the AAUAAA in the complex is independently demonstrated by immunoprecipitation of a specific T1 oligonucleotide containing the element from the 25S fraction. Precipitation of this fragment from reaction mixtures is blocked by the U----C mutation. However, neither ATP nor the downstream sequence element is required for binding of this factor in the nuclear extract, suggesting that recognition of the AAUAAA is an initial event in complex assembly.  相似文献   

7.
A recent genome-wide bioinformatic analysis indicated that 54% of human genes undergo alternative polyadenylation. Although it is clear that differential selection of poly(A) sites can alter gene expression, resulting in significant biological consequences, the mechanisms that regulate polyadenylation are poorly understood. Here we report that the neuron-specific members of a family of RNA-binding proteins, Hu proteins, known to regulate mRNA stability and translation in the cytoplasm, play an important role in polyadenylation regulation. Hu proteins are homologs of the Drosophila embryonic lethal abnormal visual protein and contain three RNA recognition motifs. Using an in vitro polyadenylation assay with HeLa cell nuclear extract and recombinant Hu proteins, we have shown that Hu proteins selectively block both cleavage and poly(A) addition at sites containing U-rich sequences. Hu proteins have no effect on poly(A) sites that do not contain U-rich sequences or sites in which the U-rich sequences are mutated. All three RNA recognition motifs of Hu proteins are required for this activity. Overexpression of HuR in HeLa cells also blocks polyadenylation at a poly(A) signal that contains U-rich sequences. Hu proteins block the interaction between the polyadenylation cleavage stimulation factor 64-kDa subunit and RNA most likely through direct interaction with poly(A) cleavage stimulation factor 64-kDa subunit and cleavage and polyadenylation specificity factor 160-kDa subunit. These studies identify a novel group of mammalian polyadenylation regulators. Furthermore, they define a previously unknown nuclear function of Hu proteins.  相似文献   

8.
To elucidate the mechanism by which poly(A) polymerase functions in the 3'-end processing of pre-mRNAs, polyadenylation-specific RNP complexes were isolated by sedimentation in sucrose density gradients and the fractions were analyzed for the presence of the enzyme. At early stages of the reaction, the RNP complexes were resolved into distinct peaks which sedimented at approximately 18S and 25S. When reactions were carried out under conditions which support cleavage or polyadenylation, the pre-mRNA was specifically assembled into the larger 25S RNP complexes. Polyclonal antibodies raised against the enzyme purified from a rat hepatoma, which have been shown to inhibit cleavage and polyadenylation (Terns, M., and Jacob, S. T., Mol. Cell. Biol. 9:1435-1444, 1989) also prevented assembly of the 25S polyadenylation-specific RNP complexes. Furthermore, formation of these complexes required the presence of a chromatographic fraction containing poly(A) polymerase. UV cross-linking analysis indicated that the purified enzyme could be readily cross-linked to pre-mRNA but in an apparent sequence-independent manner. Reconstitution studies with the fractionated components showed that formation of the 25S RNP complex required the poly(A) polymerase fraction. Although the enzyme has not been directly localized to the specific complexes, the data presented in this report supports the role of poly(A) polymerase as an essential component of polyadenylation-specific complexes which functions both as a structural and enzymatic constituent.  相似文献   

9.
10.
C Hashimoto  J A Steitz 《Cell》1986,45(4):581-591
RNAs containing the polyadenylation sites for adenovirus L3 or E2a mRNA or for SV40 early or late mRNA are substrates for cleavage and poly(A) addition in an extract of HeLa cell nuclei. When polyadenylation reactions are probed with ribonuclease T1 and antibodies directed against either the Sm protein determinant or the trimethylguanosine cap structure at the 5' end of U RNAs in small nuclear ribonucleoproteins, RNA fragments containing the AAUAAA polyadenylation signal are immunoprecipitated. The RNA cleavage step that occurs prior to poly(A) addition is inhibited by micrococcal nuclease digestion of the nuclear extract. The immunoprecipitation of fragments containing the AAUAAA sequence can be altered, but not always abolished, by pretreatment with micrococcal nuclease. We discuss the involvement of small nuclear ribonucleoproteins in the cleavage and poly(A) addition reactions that form the 3' ends of most eukaryotic mRNAs.  相似文献   

11.
Sedimentation analysis of polyadenylation-specific complexes.   总被引:21,自引:11,他引:10  
Precursor RNA containing the adenovirus L3 polyadenylation site is assembled into a 50S complex upon incubation with HeLa nuclear extract at 30 degrees C. The cofactor and sequence requirements for 50S complex formation are similar to those of the in vitro polyadenylation reaction. Assembly of this complex requires ATP but is not dependent upon synthesis of a poly(A) tract. In addition, a 50S complex does not form on substrate RNA in which the AAUAAA hexanucleotide upstream of the poly(A) site has been mutated to AAGAAA or on RNA in which sequences between +5 and +48 nucleotides downstream of the site have been removed. These mutations also prevent in vitro processing of substrate RNA. Kinetic studies suggest that the 50S complex is an intermediate in the polyadenylation reaction. It forms at an early stage in the reaction and at later times contains both poly(A)+ RNA as well as unreacted precursor. U-type small nuclear ribonucleoprotein particles are components of the 50S complex, as shown by immunoprecipitation with antiserum specific to the trimethyl cap of these small nuclear RNAs.  相似文献   

12.
Exogenous RNA containing the simian virus 40 early polyadenylation site was efficiently and accurately polyadenylated in in vitro nuclear extracts. Correct cleavage required ATP. In the absence of ATP, nonpoly(A)+ products accumulated which were 18 to 20 nucleotides longer than the RNA generated by correct cleavage; the longer RNA terminated adjacent to the downstream TG element required for polyadenylation. In the presence of ATP analogs, alternate cleavage was not observed; instead, correct cleavage without poly(A) addition occurred. ATP-independent cleavage of simian virus 40 early RNA had many of the same properties as correct cleavage including requirements for an intact AAUAAA element, a proximal 3' terminus, and extract small nuclear ribonucleoproteins. This similarity in reaction parameters suggested that ATP-independent cleavage is an activity of the normal polyadenylation machinery. The ATP-independent cleavage product, however, did not behave as an intermediate in polyadenylation. The alternate RNA did not preferentially chase into correctly cleaved material upon readdition of ATP; instead, poly(A) was added to the 3' terminus of the cleaved RNA during a chase. Purified ATP-independent cleavage RNA, however, was a substrate for correct cleavage when reintroduced into the nuclear extract. Thus, alternate cleavage of polyadenylation sites adjacent to a required downstream sequence element is directed by the polyadenylation machinery in the absence of ATP.  相似文献   

13.
14.
15.
The mechanism of RNA degradation in Escherichia coli involves endonucleolytic cleavage, polyadenylation of the cleavage product by poly(A) polymerase, and exonucleolytic degradation by the exoribonucleases, polynucleotide phosphorylase (PNPase) and RNase II. The poly(A) tails are homogenous, containing only adenosines in most of the growth conditions. In the chloroplast, however, the same enzyme, PNPase, polyadenylates and degrades the RNA molecule; there is no equivalent for the E. coli poly(A) polymerase enzyme. Because cyanobacteria is a prokaryote believed to be related to the evolutionary ancestor of the chloroplast, we asked whether the molecular mechanism of RNA polyadenylation in the Synechocystis PCC6803 cyanobacteria is similar to that in E. coli or the chloroplast. We found that RNA polyadenylation in Synechocystis is similar to that in the chloroplast but different from E. coli. No poly(A) polymerase enzyme exists, and polyadenylation is performed by PNPase, resulting in heterogeneous poly(A)-rich tails. These heterogeneous tails were found in the amino acid coding region, the 5' and 3' untranslated regions of mRNAs, as well as in rRNA and the single intron located at the tRNA(fmet). Furthermore, unlike E. coli, the inactivation of PNPase or RNase II genes caused lethality. Together, our results show that the RNA polyadenylation and degradation mechanisms in cyanobacteria and chloroplast are very similar to each other but different from E. coli.  相似文献   

16.
Accurate cleavage and polyadenylation of exogenous RNA substrate   总被引:103,自引:0,他引:103  
C L Moore  P A Sharp 《Cell》1985,41(3):845-855
Purified precursor RNA containing the L3 polyadenylation site of late adenovirus 2 mRNA is accurately cleaved and polyadenylated when incubated with nuclear extract from HeLa cells. The reaction is very efficient; 75% of the precursor is correctly processed. Cleavage is rapidly followed by polymerization of an initial poly(A) tract of approximately 130 nucleotides. Additional adenosine residues are added during further incubation. In the presence of the ATP analog alpha-beta-methylene-adenosine 5' triphosphate, the precursor RNA is cleaved but not polyadenylated, suggesting that processing is not coupled to the synthesis of the initial poly(A) tract. In the absence of free Mg2+, a small RNA of approximately 46 nucleotides is stabilized against degradation. Fingerprint analysis suggests this RNA is produced by endonucleolytic cleavage at the L3 site. Like the in vitro splicing reaction, the in vitro polyadenylation reaction is inhibited by adding antiserum against the small nuclear ribonucleoprotein particle containing U1 RNA.  相似文献   

17.
To determine the role of poly(A) polymerase in 3'-end processing of mRNA, the effect of purified poly(A) polymerase antibodies on endonucleolytic cleavage and polyadenylation was studied in HeLa nuclear extracts, using adenovirus L3 pre-mRNA as the substrate. Both Mg2+- and Mn2+-dependent reactions catalyzing addition of 200 to 250 and 400 to 800 adenylic acid residues, respectively, were inhibited by the antibodies, which suggested that the two reactions were catalyzed by the same enzyme. Anti-poly(A) polymerase antibodies also inhibited the cleavage reaction when the reaction was coupled or chemically uncoupled with polyadenylation. These antibodies also prevented formation of specific complexes between the RNA substrate and components of nuclear extracts during cleavage or polyadenylation, with the concurrent appearance of another, antibody-specific complex. These studies demonstrate that (i) previously characterized poly(A) polymerase is the enzyme responsible for addition of the poly(A) tract at the correct cleavage site and probably for the elongation of poly(A) chains and (ii) the coupling of these two 3'-end processing reactions appears to result from the potential requirement of poly(A) polymerase for the cleavage reaction. The results suggest that the specific endonuclease is associated with poly(A) polymerase in a functional complex.  相似文献   

18.
Zhao H  Zheng J  Li QQ 《Plant physiology》2011,157(3):1546-1554
Messenger RNA (mRNA) maturation in eukaryotic cells requires the formation of the 3' end, which includes two tightly coupled steps: the committing cleavage reaction that requires both correct cis-element signals and cleavage complex formation, and the polyadenylation step that adds a polyadenosine [poly(A)] tract to the newly generated 3' end. An in vitro biochemical assay plays a critical role in studying this process. The lack of such an assay system in plants hampered the study of plant mRNA 3'-end formation for the last two decades. To address this, we have now established and characterized a plant in vitro cleavage assay system, in which nuclear protein extracts from Arabidopsis (Arabidopsis thaliana) suspension cell cultures can accurately cleave different pre-mRNAs at expected in vivo authenticated poly(A) sites. The specific activity is dependent on appropriate cis-elements on the substrate RNA. When complemented by yeast (Saccharomyces cerevisiae) poly(A) polymerase, about 150-nucleotide poly(A) tracts were added specifically to the newly cleaved 3' ends in a cooperative manner. The reconstituted polyadenylation reaction is indicative that authentic cleavage products were generated. Our results not only provide a novel plant pre-mRNA cleavage assay system, but also suggest a cross-kingdom functional complementation of yeast poly(A) polymerase in a plant system.  相似文献   

19.
Translational activation in oocytes and embryos is often regulated via increases in poly(A) length. Cleavage and polyadenylation specificity factor (CPSF), cytoplasmic polyadenylation element binding protein (CPEB), and poly(A) polymerase (PAP) have each been implicated in cytoplasmic polyadenylation in Xenopus laevis oocytes. Cytoplasmic polyadenylation activity first appears in vertebrate oocytes during meiotic maturation. Data presented here shows that complexes containing both CPSF and CPEB are present in extracts of X. laevis oocytes prepared before or after meiotic maturation. Assessment of a variety of RNA sequences as polyadenylation substrates indicates that the sequence specificity of polyadenylation in egg extracts is comparable to that observed with highly purified mammalian CPSF and recombinant PAP. The two in vitro systems exhibit a sequence specificity that is similar, but not identical, to that observed in vivo, as assessed by injection of the same RNAs into the oocyte. These findings imply that CPSFs intrinsic RNA sequence preferences are sufficient to account for the specificity of cytoplasmic polyadenylation of some mRNAs. We discuss the hypothesis that CPSF is required for all polyadenylation reactions, but that the polyadenylation of some mRNAs may require additional factors such as CPEB. To test the consequences of PAP binding to mRNAs in vivo, PAP was tethered to a reporter mRNA in resting oocytes using MS2 coat protein. Tethered PAP catalyzed polyadenylation and stimulated translation approximately 40-fold; stimulation was exclusively cis-acting, but was independent of a CPE and AAUAAA. Both polyadenylation and translational stimulation required PAPs catalytic core, but did not require the putative CPSF interaction domain of PAP. These results demonstrate that premature recruitment of PAP can cause precocious polyadenylation and translational stimulation in the resting oocyte, and can be interpreted to suggest that the role of other factors is to deliver PAP to the mRNA.  相似文献   

20.
Polyadenylation of ribosomal RNA in human cells   总被引:7,自引:1,他引:6       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号