首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have suggested the importance of phosphatidylcholine (PC) metabolism in growth factor-stimulated cells. In these cells, PC is hydrolyzed not only by PC-specific phospholipase C but also by phospholipase D (PLD). In the present investigation, we show that the simple addition of PC-hydrolyzing PLD from Streptomyces chromofuscus to the culture medium of vascular smooth muscle cells elicits choline release into the medium accompanied by the formation of phosphatidic acid. In the presence of ethanol, this treatment elicits a formation of phosphatidylethanol (PEt) at the expense of phosphatidic acid. Furthermore, we show here that exogenous addition of S. chromofuscus PLD induces a marked DNA synthesis in quiescent vascular smooth muscle cells. This DNA synthesis induced by S. chromofuscus PLD is, like platelet-derived growth factor (PDGF)-elicited DNA synthesis, largely dependent on the presence of insulin. In addition, S. chromofuscus PLD-induced PEt formation and DNA synthesis were not affected by protein kinase C down-regulation, whereas PDGF-induced PEt formation and DNA synthesis were significantly inhibited. These observations strongly suggest that protein kinase-dependent activation of PLD is involved in mitogenic signal in PDGF-stimulated cells and that exogenously added PLD acts as a competence factor in the same way as PDGF.  相似文献   

2.
Rat embryo fibroblasts (REF52 cells) and the simian virus 40 transformed derivative (WT6 Ag6) were employed to characterize phospholipase D (PLD) activity in normal and transformed cells. In cells prelabeled with [3H]myristic acid or [3H]glycerol and treated with 12-O-tetradecanoylphorbol-13-acetate (TPA, 50 ng/ml medium) or vasopressin (VP, 100 ng/ml medium) in the presence of ethanol, the formation of labeled phosphatidylethanol (PEt) was 3- to 5-fold higher in REF52 cells than in the transformed cells. The transphosphatidylation of phosphatidylcholine (PC) to PEt was further examined in cell-free assay systems. Results demonstrated that the formation of PEt in the cell-free assays was dependent on the mode of substrate presentation and the source of the PC. With endogenous membrane-bound substrate, the formation of [3H]myristoyl-PEt was 5-fold higher in homogenates derived from normal cells as compared to transformed cell homogenates. In experiments using exogenous labeled PC isolated from either REF52 or transformed cells as substrate, cell-free PLD activity differed greatly with regard to the source of the PC. The formation of PEt from REF52-derived PC was approx. 4-fold higher as compared to PEt formed with PC derived from the transformed cells, irrespective of enzyme source. The results demonstrate that PLD in intact nontransformed fibroblasts is activatable by TPA and VP to a greater extent than in the transformed counterpart. The results from cell-free assays suggest that PLD activity is more dependent on the type of PC substrate than on the source of the enzyme.  相似文献   

3.
It has recently been demonstrated that the chemotactic peptide N-formyl-Met-Leu-Phe activates phospholipase D (PLD) in dimethyl sulfoxide-differentiated HL-60 granulocytes to produce phosphatidic acid (PA) and, in the presence of ethanol, phosphatidylethanol (PEt) (Pai, J.-K., Siegel, M. I., Egan, R. W., and Billah, M. M. (1988) J. Biol. Chem. 263, 12472-12477). We now report that biologically active phorbol esters, a cell-permeable diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), and calcium ionophore A23187 are also potent inducers of PLD in these HL-60 granulocytes. HL-60 granulocytes have been selectively labeled in 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl-PC) with 32P by incubating the cells with alkyl-[32P]lyso-phosphatidylcholine (PC). When these labeled cells are treated with phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-dibutyrate, OAG, or A23187, alkyl-[32P]PA is formed. Because cellular ATP has not been labeled with 32P, the formation of alkyl-[32P]PA conclusively demonstrates PLD activation by these agents. In the presence of 0.5% ethanol, phorbol esters, OAG, and A23187 also induce formation of alkyl-[32P]PEt, demonstrating that the activated PLD catalyzes transphosphatidylation between the phosphatidyl moiety of the alkyl-[32P]PC and ethanol. Formation of alkyl-[32P]PA and alkyl-[32P]PEt in response to these various agents occurs in a time- and dose-dependent manner and exhibits differential Ca2+ requirements. Based on experiments with both [3H]alkyl-PC and alkyl-[32P]PC, it is concluded that alkyl-PA and alkyl-PEt formed in response to PMA, OAG, or A23187 are derived exclusively from PLD action on alkyl-PC. Furthermore, subthreshold concentrations of PMA (0.5-2.0 nM) or OAG (1.0-25 microM) combined with subthreshold levels of A23187 (15-60 nM) induce the formation of alkyl-[32P]PA and alkyl-[32P]PEt, suggesting that receptor-mediated activation of PLD might involve cooperative interactions between Ca2+ and diglyceride. Although PLD is activated by agents that also activate protein kinase C, the protein kinase C inhibitor, K252a, inhibits PMA-induced protein phosphorylation but causes only partial inhibition of PLD activation. We conclude that phorbol esters, OAG, and A23187 activate PLD in HL-60 granulocytes via protein kinase-independent as well as protein kinase-dependent mechanisms.  相似文献   

4.
We have shown previously that the major source of diglyceride (DG) formed following muscarinic receptor (mAChR) stimulation of 1321N1 astrocytoma cells is phosphatidylcholine (PC) rather than the phosphoinositides (Martinson, E. A., Goldstein, D., and Brown, J. H. (1989) J. Biol. Chem. 264, 14748-14754). We have also noted that there is a delay of several minutes before significant DG accumulation is observed. In the present work, we examine the time course and mechanism of PC hydrolysis in response to mAChR stimulation. Treatment of 1321N1 cells with carbachol results in increases in radiolabeled choline, phosphatidic acid (PA) and phosphatidylethanol (PEt), metabolites that are products of phospholipase D (PLD) action on PC. These products are all formed within 15 s of mAChR stimulation and reach a plateau within 30-60 s. The time course of PEt formation suggests that PLD is no longer activated after several minutes of mAChR stimulation. Thus there is a discrepancy between the rapid and transient activation of PLD and the delayed accumulation of DG. It appears that most of the DG is formed through the action of PLD, since propranolol (which inhibits the conversion of PA to DG) and down-regulation of protein kinase C (which prevents activation of PLD by carbachol) both markedly inhibit DG production. Using a protocol in which cells are stimulated with carbachol for only one minute (a period during which PLD and PA formation are maximally activated), we show that DG mass continues to increase following removal of agonist. We suggest that the rapid and transient activation of PLD results in delayed accumulation of DG due to the relatively slow conversion of PA to DG by PA phosphatase.  相似文献   

5.
Endothelins (ETs) are a family of extremely potent vasoconstrictor peptides. In addition, ET-1 acts as a potent mitogen and activates phospholipase C in smooth muscle cells and fibroblasts. We examined the effects of ET-1 on phosphatidylcholine (PC) metabolism and thymidine incorporation in control Rat-6 fibroblasts and in cells that overexpress protein kinase C beta 1 (PKC). PC pools were labeled with [3H]myristic acid, and formation of phosphatidylethanol (PEt), an unambiguous marker of phospholipase D (PLD) activation, was monitored. ET-1 stimulated much greater PEt formation in the PKC overexpressing cells. ET-1 action was dose-dependent with a half-maximal effect at 1.0 x 10(-9) M. With increasing ethanol concentrations, [3H]PEt formation increased at the expense of [3H]phosphatidic acid (PA). Propranolol, an inhibitor of PA phosphohydrolase, increased [3H]PA accumulation and decreased [3H]diacylglycerol (DAG) formation. These data are consistent with the formation of [3H]DAG from PC by the sequential action of PLD and PA phosphohydrolase. Phorbol esters are known to stimulate thymidine incorporation and PLD activity to a greater extent in PKC overexpressing cells than in control cells. ET-1 also stimulates thymidine incorporation to a greater extent in the PKC overexpressing cells. The effect of ET-1 on thymidine incorporation into DNA in the overexpressing cells was also dose-dependent with a half-maximal effect at 0.3 x 10(-9) M. Enhanced PLD activity induced by ET-1 in the overexpressing cells may contribute to the mitogenic response, especially in light of a possible role of the PLD product, PA, in regulation of cell growth.  相似文献   

6.
Phospholipase D (PLD) plays an important role in signaling through phosphatidylcholine (PC) and in the production of superoxide (respiratory burst) by polymorphonuclear leukocytes (PMN) stimulated by the chemoattractant fMet-Leu-Phe (fMLP). However, the regulation of PLD activity by protein kinases is not fully understood. In the present study, we have used a mitogen-activated protein (MAP) kinase inhibitor (PD 98059) to investigate a possible connection between extracellular signal-regulated kinase (ERK) and PLD activity and respiratory burst. Using a range of concentrations (3-20 microM) which inhibit ERK activity, PD 98059 inhibited PLD activity induced by fMLP in cytochalasin B-primed PMN, as assessed by production-tritiated phosphatidylethanol (PEt), phosphatidic acid (PA), and hydrolysis of PC. However, the inhibition was partial (approximately 50%), while inhibition of PC hydrolysis was almost complete, suggesting a concomitant inhibition of PLA2 activity. In addition, PD 98059 reduced fMLP-induced respiratory burst by 50%, an effect which was correlated with PLD inhibition of PLD (r = 0.981, P < 0.01), and neither did PD 98059 inhibit the PLD activity and respiratory burst induced by PKC upon its direct activation by phorbol myristate acetate. These data provide the first evidence for implication of the ERK cascade in the stimulation of PLD through Gi signaling. They further indicate that PLD stimulation by fMLP receptors occurs through two pathways, dependent and independent on MAP kinase, the former pathway being linked to superoxide production.  相似文献   

7.
Wortmannin, a specific inhibitor of myosin light chain kinase (MLCK), enhanced carbachol-induced formation of [3H]phosphatidylethanol ([3H]PEt), a marker of phospholipase D (PLD) activity, in [3H]palmitic acid-labeled PC12 cells. The apparent EC50 value was 1.5 microM, and the effect was maximal at 3 microM and slightly attenuated at higher concentration. Wortmannin alone had no significant effect on [3H]PEt formation. The enhancing effect of wortmannin was observed at the initial increasing phase of [3H]PEt formation but not at the subsequent plateau phase. Wortmannin enhanced also phorbol ester-induced PLD activation. Although the precise mechanism remains to be clarified, these results suggest that MLCK may be involved in PLD regulation in PC12 cells.  相似文献   

8.
The current studies explore the role of phospholipase D (PLD) in mast cell activation. Although most investigators believe that receptor-mediated accumulation of 1,2-diacylglycerol (DAG) occurs by phospholipase C hydrolysis of phosphoinositides, our previous work indicated a modest role for these substrates and suggested that phosphatidylcholine (PC) is the more likely substrate. PLD cleaves the terminal phosphodiester bond of phospholipids to yield phosphatidic acid (PA), but in the presence of ethanol, it transfers the phosphatidyl moiety of the phospholipid substrate to ethanol producing phosphatidylethanol (PEt); a reaction termed transphosphatidylation. In purified rat mast cells prelabeled with [3H]arachidonic acid, [3H]palmitic acid, or 1-O-[3H]alkyl-lysoPC, a receptor-associated increase in PLD activity was initially suggested by the rapid accumulation of labeled PA, although other mechanisms might be involved. PLD activity was assessed more directly by the production of labeled PEt by PLD-mediated transphosphatidylation in the presence of ethanol. IgE receptor cross-linking resulted in a 3- to 10-fold increase in PLD activity during the 10 min after stimulation, approximately 50% of which occurred during the first two min. PEt formation was dependent on the concentration of ethanol and was maximal at 0.5%. At concentrations of ethanol greater than or equal to 0.2%, receptor-dependent formation of PA was reduced suggesting that the ethanol promoted transphosphatidylation at the expense of hydrolysis. The dose-related decline in PA accumulation seen in the presence of ethanol was similar to ethanol-mediated inhibition of exocytosis suggesting that receptor-mediated PA formation may be of regulatory importance. These observations indicate that PLD-mediated formation of PA occurs in stimulated mast cells and, in conjunction with separate findings of PA phosphohydrolase conversion of PA to DAG in mast cells, suggest that a major mechanism of DAG formation during mast cell activation is PC----PA----DAG.  相似文献   

9.
The mechanism of phosphatidylcholine (PC) degradation stimulated by phorbol myristate acetate (PMA) was investigated in bovine pulmonary artery endothelial cells prelabeled with [methyl-3H]choline ([3H]choline) or [9,10-3H]myristic acid ([3H]myristic acid). Both labels were selectively incorporated into PC, and addition of PMA stimulated comparable losses of 3H from PC in cells prelabeled with [3H]choline or [3H]myristate. In cells prelabeled with [3H]choline, the loss of 3H from PC correlated with a rapid increase in intracellular free [3H]choline. The increase in intracellular [3H]choline stimulated by PMA was not preceded by an increase in any other 3H-labeled PC degradation product. PMA did not stimulate the formation of PC deacylation products in cells prelabeled with [3H]choline. In permeabilized cells prelabeled with [3H]choline, PMA stimulated the formation of [3H]choline but not [3H]phosphocholine. In intact cells prelabeled with [3H]myristate, the loss of 3H from PC induced by PMA correlated with the formation of [3H]phosphatidic acid ([3H]PA) and [3H]diacylglycerol. In the presence of ethanol, PMA stimulated the formation of [3H]phosphatidylethanol ([3H]PEt) at the expense of [3H]PA. The time-course of [3H]PEt formation was similar to the time-course of intracellular [3H]choline formation in cells stimulated with PMA. These data taken together support the notion that PC degradation in endothelial cells stimulated with PMA is mediated principally by phospholipase D. PC breakdown via phospholipase D was not observed in cells treated with phorbol esters incapable of interacting with protein kinase C. Activation of phospholipase D by phorbol esters was inhibited by long-term pretreatment of cells with PMA to down-regulate protein kinase C and by pretreatment of the cells with staurosporine. These data support the notion that activation of phospholipase D by phorbol esters is dependent upon protein kinase C.  相似文献   

10.
Recently it was reported that tumor-promoting phorbol esters stimulate the production of phosphatidylethanol (PEt) in lymphocytes through the activation of phospholipase D (PLD). However, it remains unclear whether this activation is mediated through protein kinase (PKC). The study reported here shows that tumor promoters 12-0-tetradecanoylphorbol-13-acetate (TPA), phorbol dibutyrate (PDBU), 12-deoxyphorbol-13-phenylacetate (DOPP), 12-deoxyphorbol-13-phenylacetate-20-acetate (DOPPA) and mezerin activated PLD, as measured by the formation of PEt, whereas Concanavalin A (ConA) had no effect. Inhibitors of PKC, sphingosine (2 x 10(-6) M - 5 x 10(-6) M), H-7, HA1004 (5 x 10(-7) - 5 x 10(-6) M) and K252a (1 x 10(-7) - 1 x 10(-6) M) failed to block the PEt synthesis induced by TPA. In fact, sphingosine increased it. Other PKC activators, 1-oleoyl-2-acetylglycerol (OAG) and dioctanoylglycerol (DiC8) had no effect on lymphocyte PLD activity. Analysis of the phospholipid contents after stimulation by TPA showed that only phosphatidylcholine (PC) was significantly decreased. Interestingly, TPA activated PLD in intact cells but not in lysates or subcellular fractions. These observations suggest that stimulation of PLD-catalyzed PEt synthesis by TPA is not solely mediated through PKC activation.  相似文献   

11.
The role of lipid-bound second messengers in the regulation of neurotransmitter secretion is an important but poorly understood subject. Both bovine adrenal chromaffin cells and rat phoeochromocytoma (PC12) cells, two widely studied models of neuronal function, respond to bradykinin by generating phosphatidic acid (PA). This putative second messenger may be produced by two receptor-linked pathways: sequential action of phospholipase C (PLC) and diacylglycerol kinase (DAG kinase), or directly by phospholipase D (PLD). Here we show that bradykinin stimulation of chromaffin cells prelabelled (24 h) with 32Pi leads to production of [32P]PA which is not affected by 50 mM butanol. However, bradykinin stimulation of PC12 cells leads to [32P]PA formation, all of which is converted to phosphatidylbutanol in the presence of butanol. When chromaffin cells prelabelled with [3H]choline were stimulated with bradykinin there was no enhancement of formation of water soluble products of phosphatidylcholine hydrolysis. When chromaffin cells were permeabilised with pneumolysin and incubated in the presence of [gamma-32P]ATP, the formation of [32P]PA was still stimulated by bradykinin. These results show that, although both neuronal models synthesize PA in response to bradykinin, they do so by quite different routes: PLC/DAG kinase for chromaffin cells and PLD for PC12 cells. The observation that neither bradykinin nor tetradecanoyl phorbol acetate stimulate PLD in chromaffin cells suggests that these cells lack PLD activity. The conservation of PA formation, albeit by different routes, may indicate an essential role of PA in the regulation of cellular events by bradykinin.  相似文献   

12.
Occupancy of chemotactic peptide receptors leads to rapid initiation of phospholipase D (PLD) activity in intact dimethylsulfoxide-differentiated HL-60 granulocytes (Pai, J.-K, Siegel, M.I., Egan, R.W., and Billah, M.M. (1988) J. Biol. Chem. 263, 12472). To gain further insight into the activation mechanisms, PLD has been studied in cell lysates from HL-60 granulocytes, using 1-0-alkyl-2-oleoyl-[32P]phosphatidylcholine (alkyl-[32P]PC), 1-0-[3H]alkyl-2-oleoyl-phosphatidylcholine [( 3H]alkyl-PC) and [14C]arachidonyl-phospholipids as substrates. In the presence of Ca2+ and GTP gamma S, post-nuclear homogenates degrade alkyl-[32P]PC to produce 1-0-alkyl-[32P]phosphatidic acid (alkyl-[32P]-PA), and in the presence of ethanol, also 1-0-alkyl-[32P]phosphatidylethanol (alkyl-[32P]PEt). By comparing the 3H/32P ratios of PA and PEt to that of PC, it is concluded that PA and PEt are formed exclusively by a PLD that catalyzes both hydrolysis and transphosphatidylation between PC and ethanol. Furthermore, PC containing either ester- or ether-linkage at the sn-1 position is degraded in preference to phosphatidylethanolamine and phosphatidylinositol by PLD in HL-60 cell homogenates. It is concluded that HL-60 granulocytes contain a PC-specific PLD that requires both Ca2+ and GTP for activation.  相似文献   

13.
Treatment with dibutyryl cyclic AMP (dBcAMP) of the human, premonocytic U937 cell line results in differentiation toward a monocyte/granulocyte-like cell. This differentiation enables the cell to activate cytosolic phospholipase A2 (cPLA2) to release arachidonate upon stimulation. In contrast, undifferentiated cells are unable to release arachidonate even when stimulated with calcium ionophores. In the present research, a role for phospholipase D (PLD) in the regulation of cPLA2 was shown based on a number of observations. First, the ionomycin- and fMLP-stimulated production of arachidonate in differentiated cells was sensitive to ethanol (2% (v/v)). Ethanol acts as an alternate substrate in place of water for PLD producing phosphatidylethanol (PEt) instead of phosphatidic acid. Indeed, ionomycin stimulation of differentiated cells produced a 14-fold increase in PEt levels. Further evidence for the involvement of PLD in the regulation of cPLA2 came from the observation that the stimulated production of diacylglycerol (for which phosphatidic acid is a major source) was greatly diminished in undifferentiated cells as compared to differentiated cells. Moreover, the normally deficient activation of cPLA2 in undifferentiated cells could be stimulated to release arachidonate if the cells were electroporated in the presence of GTP[gamma]S and MgATP. This treatment stimulates phosphatidylinositol-4,5-bisphosphate (PIP2) production which appears to activate PLD and cPLA2 in subsequent steps. The phosphatidic acid (and diacylglycerol derived from phosphatidic acid) appears to greatly regulate the action of cPLA2 by an unknown mechanism, and undifferentiated cells lack the ability to stimulate PLD activity due to a dysfunction of PIP2 production.  相似文献   

14.
In the present study, an activation mechanism for phospholipase D (PLD) in [3H]palmitic acid-labeled pheochromocytoma PC12 cells in response to carbachol (CCh) was investigated. PLD activity was assessed by measuring the formation of [3H]phosphatidylethanol ([3H]PEt), the specific marker of PLD activity, in the presence of 0.5% (vol/vol) ethanol. CCh caused a rapid accumulation of [3H]-PEt, which reached a plateau within 1 min, in a concentration-dependent manner. The [3H]PEt formation by CCh was completely antagonized by atropine, demonstrating that the CCh effect was mediated by the muscarinic acetylcholine receptor (mAChR). A tumor promoter, phorbol 12-myristate 13-acetate (PMA), also caused an increase in [3H]-PEt content, which reached a plateau at 30-60 min after exposure, but an inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate, did not. Although a protein kinase C (PKC) inhibitor, staurosporine (5 microM), blocked PMA-induced [3H]PEt formation by 77%, it had no effect on the CCh-induced formation. These results suggest that mAChR-induced PLD activation is independent of PKC, whereas PLD activation by PMA is mediated by PKC. NaF, a common GTP-binding protein (G protein) activator, and a stable analogue of GTP, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), also stimulated [3H]PEt formation in intact and digitonin-permeabilized cells, respectively. GTP, UTP, and CTP were without effect. Furthermore, guanosine 5'-O-(2-thiodiphosphate) significantly inhibited CCh- and GTP gamma S-induced [3H]PEt formation in permeabilized cells but did not inhibit the formation by PMA, and staurosporine (5 microM) had no effect on [3H]PEt formation by GTP gamma S.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Intact cells and cell-free systems were employed to characterize phospholipase D (PLD) activity in Madin-Darby canine kidney (MDCK) cells. In cells prelabeled with [3H]glycerol, 12-O-tetradecanoylphorbol-13-acetate (TPA) elicited phosphatidylcholine (PC) hydrolysis by PLD, as shown by the prolonged formation of [3H]phosphatidylethanol (PEt) and an accompanying decrease in [3H]PC. In contrast, bradykinin elicited rapid formation of [3H]PEt (approximately 1 min) accompanied by a decrease in [3H]phosphatidylinositol (PI). When the agonists were administered simultaneously, [3H]PEt formation was biphasic. In cells prelabeled with [3H] choline, at times less than 1 min, bradykinin failed to induce significant change in [3H]choline release. Bradykinin-induced formation of [3H]PEt in the [3H]glycerol-labeled cells was strictly dependent on extracellular Ca2+, whereas TPA-induced formation of [3H]PEt did not require extracellular Ca2+. Cell-free assays for PLD were used to assess the enzyme location, substrate specificity, and cofactor requirements. The PC-PLD activity (PEt formation) against [3H]stearoyl-PC was primarily localized in the 440 x g pellet (membrane- and nuclear-associated), preferred PC as a substrate, required detergent, and was not influenced by Ca2+ at low concentrations but was inhibited by Ca2+ in excess of 0.5 mM. The PI-PLD activity against [3H]stearoyl-PI was found largely in the 100,000 x g supernatant (cytosol), was strictly Ca(2+)-dependent, and did not require detergent. From these data, we conclude that MDCK cells contain two PLD subtypes: 1) a membrane-associated, PC-selective enzyme that responds to TPA resulting in prolonged hydrolysis of PC (the PC-PLD is Ca(2+)-independent, but requires detergent); 2) a cytosolic, PI-selective enzyme that responds rapidly but transiently to bradykinin (the PI-PLD requires Ca2+ but not detergent).  相似文献   

16.
There exists circumstantial evidence for activation of phospholipase D (PLD) in intact cells. However, because of the complexity of phospholipid remodeling processes, it is essential to distinguish PLD clearly from other phospholipases and phospholipid remodeling enzymes. Therefore, to establish unequivocally PLD activity in dimethyl sulfoxide-differentiated HL-60 granulocytes, to demonstrate the relative contribution of PLD to phospholipid turnover, and to validate the hypothesis that the formation of phosphatidylethanol is an expression of PLD-catalyzed transphosphatidylation, we have developed methodologies to label HL-60 granulocytes in 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl-PC) with 32P without labeling cellular ATP. These methodologies involve (a) synthesis of alkyl-lysoPC containing 32P by a combination of enzymatic and chemical procedures and (b) incubation of HL-60 granulocytes with this alkyl-[32P] lysoPC which enters the cell and becomes acylated into membrane-associated alkyl-[32P]PC. Upon stimulation of these 32P-labeled cells with the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP), alkyl-[32P]phosphatidic acid (alkyl-[32P]PA) is formed rapidly. Because, under these conditions, cellular ATP has not been labeled with 32P, alkyl-[32P]PA must be formed via PLD-catalyzed hydrolysis of alkyl-[32P]PC at the terminal phosphodiester bond. This result conclusively demonstrates fMLP-induced activation of PLD in HL-60 granulocytes. These 32P-labeled HL-60 granulocytes have also been stimulated in the presence of ethanol to produce alkyl-[32P]phosphatidylethanol (alkyl-[32P]PEt). Formation of alkyl-[32P]PEt parallels that of alkyl-[32P]PA with respect to time course, fMLP concentration, inhibition by a specific fMLP antagonist (t-butoxycarbonyl-Met-Leu-Phe), and Ca2+ concentration. These results strongly support the hypothesis that in HL-60 granulocytes, PEt is formed via PLD-catalyzed transphosphatidylation. Moreover, using HL-60 granulocytes double-labeled by incubation with [3H]alkyl-lysoPC and alkyl-[32P]lysoPC, it has been established that the early (30 s) appearance of alkyl-PA is due primarily to PLD, not phospholipase C as previously thought, and that alkyl-PEt is formed exclusively by PLD. These results constitute the first direct evidence for receptor-linked activation of PLD, leading to the generation of PA and PEt in an intact cell system.  相似文献   

17.
Cells of epithelial origin generally require ethanolamine (Etn) to grow in defined culture medium. When such cells are grown without Etn, the membrane phospholipid composition changes drastically, becoming phosphatidylethanolamine (PE)-deficient due to a reduced de novo rate of PE synthesis, and growth stops. We have hypothesized that the cessation of growth occurs because this membrane phospholipid environment is no longer suitable for membrane-associated functions. Phospholipid has long been known to play a role in the transduction of some signals across membranes. In addition to the well-known phosphatidylinositol cycles, hydrolysis of phosphatidylcholine (PC) and PE has recently been shown to play a central role in signal transduction. Using an Etn-requiring rat mammary cell line 64-24, we have studied the metabolism of PC and PE in response to the phorbol ester phorbol 12,13-dibutyrate (PDBu) under conditions where cells have either normal or PE-deficient membrane phospholipid. In cells having normal membrane phospholipid, the synthesis of PC was stimulated by PDBu (approximately fourfold), as was the degradation of PC and PE (by twofold and fourfold, respectively). Product analysis suggested that PDBu stimulated hydrolysis of PC by both phospholipases C and D (PLC and PLD), and of PE by PLD. However, in PE-deficient cells, neither lipid synthesis or degradation were significantly stimulated by PDBu. Analysis of the CDP-choline pathway of PC synthesis indicated that the regulatory enzyme, CTP:phosphorylcholine cytidylyltransferase, was stimulated about twofold by PDBu in cells having normal membrane, but not in PE-deficient cells. These results indicate that the membrane phospholipid environment profoundly affects phospholipid metabolism, which no doubt influences cell growth and regulation.  相似文献   

18.
In an attempt to elucidate further the relationship between changes in phospholipid metabolism in, and histamine secretion from, purified rat peritoneal mast cells, the effects of the phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) on these responses in stimulated and unstimulated cells was investigated. TPA caused a dose-dependent increase in the incorporation of 32PO4(3-) into the mast cell phospholipids; phosphatidic acid (PA) and phosphatidylcholine (PC), but not phosphatidylinositol (PI). TPA synergistically enhanced histamine release from cells stimulated by anti-immunoglobulin E (IgE) and the calcium ionophore A23187, reducing its ED50 from 150 nM to 40 nM, but did not alter histamine release from cells stimulated by compound 48/80. The effect of TPA on the changes in 32PO4(3-) incorporation into phospholipids associated with the above secretagogues did not, however, correlate well with the observed effects on histamine secretion induced by the same secretagogues. These observations are discussed in relation to the known effects of phorbol esters upon both secretory processes and phospholipid metabolism in other tissues.  相似文献   

19.
Bradykinin (BK) and phorbol 12-myristate 13-acetate (PMA) both stimulate the hydrolysis of phosphatidylcholine (PC) in human fibroblasts, resulting in the formation of phosphatidic acid (PA) and diacylglycerol (DG) (Van Blitterswijk, W.J., Hilkmann, H., de Widt, J., and Van der Bend, R.L. (1990) J. Biol. Chem. 266, 10337-10343). Stimulation with BK resulted in the rapid and synchronous formation of [3H]choline and [3H]myristoyl-PA from the correspondingly prelabeled PC, indicative of phospholipase D (PLD) activity. In the presence of ethanol or n-butanol, transphosphatidylation by PLD resulted in the formation of [3H]phosphatidylethanol or - butanol, respectively, at the cost of PA and DG formation. This suggests that PC-derived DG is generated via a PLD/PA phosphohydrolase pathway. A more pronounced but delayed formation of these products was observed by PMA stimulation. The Ca2+ ionophore ionomycin also activated PLD and accelerated (synergized) the response to PMA. Both [3H] choline and [3H]phosphocholine were released into the extracellular medium in a time- and stimulus-dependent fashion, without apparent changes in the high intracellular levels of [3H]phosphocholine. The protein kinase C (PKC) inhibitors staurosporin and 1-O-hexadecyl-2-O-methylglycerol inhibited BK- and PMA-induced activation of PLD. Down-regulation of PKC by long-term pretreatment of cells with phorbol ester caused a dramatic drop in background [3H]choline levels, while subsequent stimulation with BK, ionomycin, or PMA failed to increase these levels and failed to induce transphosphatidylation. From these results we conclude that PLD activation is entirely mediated by (downstream of) PKC. Unexpectedly, however, BK stimulation of these PKC-depleted cells caused a marked generation of DG from PC within 15 s, which was not seen in BK-stimulated control cells, suggesting PC breakdown by a phospholipase C (PLCc). We conclude that cells stimulated with BK generate DG via both the PLCc and the PLD/PA hydrolase pathway, whereas PMA stimulates mainly the latter pathway. BK stimulation of normal cells leads to activation of PKC and, by consequence, to attenuation of the level of PLCc-generated DG and to stimulation of the PLD pathway, whereas the reverse occurs in PKC-down-regulated cells.  相似文献   

20.
Activation of phospholipase D by chemotactic peptide in HL-60 granulocytes   总被引:17,自引:0,他引:17  
Activation of phospholipase D (PLD) has been investigated in dimethylsulfoxide differentiated HL-60 granulocytes labeled in endogenous 1-0-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl-PC) by incubation with [3H]alkyl-lysoPC. Stimulation of these labeled cells with the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP), induces rapid generation of [3H]phosphatidic acid (PA) and slower formation of [3H]diglyceride, suggesting hydrolysis of alkyl-PC by PLD. A unique feature of PLD is its ability to transfer the phosphatidyl moiety of phospholipids to alcohols (transphosphatidylation). This characteristic has been exploited to identify PLD activity. For example, when ethanol is present during stimulation of the HL-60 cells, [3H]phosphatidylethanol (PEt) is formed with a concomitant decrease in [3H]PA. Cells incubated with [32P]orthophosphate to label the terminal phosphate of ATP do not incorporate 32P into PEt, consistent with the [3H]PEt not being synthesized from [3H]diglyceride. In contrast, [3H]PA arises from both PLD and diglyceride kinase activities. Furthermore, PEt synthesis closely parallels PA formation and both are inhibited by an fMLP receptor antagonist, suggesting that both PA and PEt are derived from agonist-stimulated PLD action. These observations are consistent with phospholipase D-catalyzed breakdown of alkyl-PC in fMLP- stimulated granulocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号