首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. In streams, mayflies (Order Ephemeroptera) are at risk from fish feeding visually in the water column. The effect of fish odour on the behaviour of Baetis bicaudatus from a fishless stream and a trout stream was investigated in four large oval tanks supplied with water from the fishless stream.
2. For each mayfly population, mayfly positioning on the substratum and movement in the water column (drift) were measured during the day and night, over 3 days. Brook trout ( Salvelinus fontinalis ) odour was added to two tanks to test the effect of a threat from fish.
3. Throughout the experiment more mayflies from the trout stream were observed on the substratum surface and in the water column during the night than the day, but the magnitude of night drift was less in tanks with fish odour.
4. Baetis from the fishless stream also displayed a nocturnal periodicity in drift and positioning, but their night-time drift was not affected by the presence of fish odour. On the first day of the experiment, however, more mayflies were observed on the substratum surface and drifting in tanks without fish odour during the day.
5. Sensitivity to fish odour may enable mayflies to alter their behaviour according to the risk of predation from fish.  相似文献   

2.
1. In streams, mayflies (Order Ephemeroptera) are at risk from fish feeding visually in the water column. The effect of fish odour on the behaviour of Baetis bicaudatus from a fishless stream and a trout stream was investigated in four large oval tanks supplied with water from the fishless stream.
2. For each mayfly population, mayfly positioning on the substratum and movement in the water column (drift) were measured during the day and night, over 3 days. Brook trout ( Salvelinus fontinalis ) odour was added to two tanks to test the effect of a threat from fish.
3. Throughout the experiment more mayflies from the trout stream were observed on the substratum surface and in the water column during the night than the day, but the magnitude of night drift was less in tanks with fish odour.
4. Baetis from the fishless stream also displayed a nocturnal periodicity in drift and positioning, but their night-time drift was not affected by the presence of fish odour. On the first day of the experiment, however, more mayflies were observed on the substratum surface and drifting in tanks without fish odour during the day.
5. Sensitivity to fish odour may enable mayflies to alter their behaviour according to the risk of predation from fish.  相似文献   

3.
Fitness and community consequences of avoiding multiple predators   总被引:6,自引:0,他引:6  
We investigated the fitness and community consequences of behavioural interactions with multiple predators in a four-trophic-level system. We conducted an experiment in oval flow-through artificial-stream tanks to examine the single and interactive sublethal effects of brook trout and stoneflies on the size at emergence of Baetis bicaudatus (Ephemeroptera: Baetidae), and the cascading trophic effects on algal biomass, the food resource of the mayflies. No predation was allowed in the experiment, so that all effects were mediated through predator modifications of prey behaviour. We reared trout stream Baetis larvae from just before egg development until emergence in tanks with four treatments: (1) water from a holding tank with two brook trout (trout odour), (2) no trout odour + eight stoneflies with glued mouthparts, (3) trout odour + stoneflies and (4) no trout odour or stoneflies. We ended the experiment after 3 weeks when ten male and ten female subimagos had emerged from each tank, measured the size of ten male and ten female mature nymphs (with black wing pads), and collected algal samples from rocks at six locations in each tank. To determine the mechanism responsible for sublethal and cascading effects on lower trophic levels we made day and night observations of mayfly behaviour for the first 6 days by counting mayflies drifting in the water column and visible on natural substrata in the artificial streams. Trout odour and stoneflies similarly reduced the size of male and female Baetis emerging from artificial streams, with non-additive effects of both predators. While smaller females are less fecund, a fitness cost of small male size has not been determined. The mechanism causing sublethal effects on Baetis differed between predators. While trout stream Baetis retained their nocturnal periodicity in all treatments, stoneflies increased drift dispersal of mayflies at night, and trout suppressed night-time feeding and drift of mayflies. Stoneflies had less effect on Baetis behaviour when fish odour was present. Thus, we attribute the non-additivity of effects of fish and stoneflies on mayfly growth to an interaction modification whereby trout odour reduced the impact of stoneflies on Baetis behaviour. Since stonefly activity was also reduced in the presence of fish odour, this modification may be attributed to the effect of fish odour on stonefly behaviour. Only stoneflies delayed Baetis emergence, suggesting that stoneflies had a greater sublethal effect on Baetis fitness than did trout. Delayed emergence may reduce Baetis fitness by increasing risks of predation and parasitism on larvae, and increasing competition for mates or oviposition sites among adults. Finally, algal biomass was higher in tanks with both predators than in the other three treatments. These data implicate a behavioural trophic cascade because predators were not allowed to consume prey. Therefore, differences in algal biomass were attributed to predator-induced changes in mayfly behaviour. Our study demonstrates the importance of considering multiple predators when measuring direct sublethal effects of predators on prey fitness and indirect effects on lower trophic levels. Identification of an interaction modification illustrates the value of obtaining detailed information on behavioural mechanisms as an aid to understanding the complex interactions occurring among components of ecological communities. Received: 20 March 1997 / Accepted: 29 September 1997  相似文献   

4.
1. A knowledge of how individual behaviour affects populations in nature is needed to understand many ecologically important processes, such as the dispersal of larval insects in streams. The influence of chemical cues from drift‐feeding fish on the drift dispersal of mayflies has been documented in small experimental channels (i.e. < 3 m), but their influence on dispersal in natural systems (e.g. 30 m stream reaches) is unclear. 2. Using surveys in 10 Rocky Mountain streams in Western Colorado we examined whether the effects of predatory brook trout (Salvelinus fontinalis) on mayfly drift, that were apparent in stream‐side channels, could also be detected in natural streams. 3. In channel experiments, the drift of Baetis bicaudatus (Baetidae) was more responsive to variation in the concentration of chemical cues from brook trout than that of another mayfly, Epeorus deceptivus (Heptageniidae). The rate of brook trout predation on drifting mayflies of both species in a 2‐m long observation tank was higher during the day (60–75%) but still measurable at night (5–10%). Epeorus individuals released into the water column were more vulnerable to trout predation by both day and night than were Baetis larvae treated similarly. 4. Drift of all mayfly taxa in five fishless streams was aperiodic, whereas their drift was nocturnal in five trout streams. The propensity of mayflies to drift was decreased during the day and increased during the night in trout streams compared with fishless streams. In contrast to the channel experiments, fish biomass and density did not alter the nocturnal nature nor magnitude of mayfly drift in natural streams. 5. In combination, these results indicate that mayflies respond to subtle differences in concentration of fish cues in experimental channels. However, temporal and spatial variation in fish cues available to mayflies in natural streams may have obscured our ability to detect responses at larger scales.  相似文献   

5.
Some benthic invertebrates in streams make frequent, short journeys downstream in the water column (=drifting). In most streams there are larger numbers of invertebrates in the drift at night than during the day. We tested the hypothesis that nocturnal drifting is a response to avoid predation from fish that feed in the water column during the day. We surveyed diel patterns of drifting by nymphs of the mayfly Baetis coelestis in several streams containing (n=5) and lacking (n=7) populations of rainbow trout, Oncorhynchus mykiss. Drifting was more nocturnal in the presence of trout (85% of daily drift occurred at night) than in their absence (50% of daily drift occurred at night). This shift in periodicity is due to reduced daytime drifting in streams with trout, because at a given nighttime drift density, the daytime drift density of B. coelestis was lower in streams occupied by trout than in troutless streams. Large size classes of B. coelestis were underrepresented in the daytime drift in trout streams compared to nighttime drift in trout streams, and to both day and night drift in troutless streams. Differences in daytime drift density between streams with and without trout were the result of differences in mayfly drift behaviour among streams because predation rates by trout were too low to significantly reduce densities of drifting B. coelestis. We tested for rapid (over 3 days) phenotypic responses to trout presence by adding trout in cages to three of the troutless streams. Nighttime drifting was unaffected by the addition of trout, but daytime drift densities were reduced by 28% below cages containing trout relative to control cages (lacking trout) placed upstream. Drift responses were measured 15 m downstream of the cages suggesting that mayflies detected trout using chemical cues. Overall, these data support the hypothesis that infrequent daytime drifting is an avoidance response to fish that feed in the water column during the day. Avoidance is more pronounced in large individuals and is, at least partially, a phenotypic response mediated by chemical cues.  相似文献   

6.
Summary We carried out an experimental field study in a Swedish stream in order to determine whether mobile predators enhance the drift of stream insects. We increased the density of nymphs of the predaceous perlid stonefly, Dinocras cephalotes, in an experimental section of a stream up to densities in another more densely populated part of the same stream. The drift of several benthic species increased significantly compared to a control section where D. cephalotes were rare. Experiments carried out in September showed a strongly elevated drift response in nymphs of the mayfly Baetis rhodani only, whereas May experiments resulted in increased drift in B. rhodani as well as the amphipod Gammarus pulex, the stonefly Leuctra fusca, chironomids, and the total number of drifting animals. In September, we found that the drift response of Baetis rhodani to predator disturbance was dependent on the size of mayfly nymphs; small nymphs appeared in greater numbers in the drift nets than did large nymphs. A subsequent laboratory analysis of drift lengths of B. rhodani nymphs supported the hypothesis that small nymphs travel in the drift for longer than do large nymphs, particularly in darkness. We suggest that morphological constraints in vision or swimming performance, or both, cause small nymphs to drift longer. In May, size-dependent drift was less obvious, probably because the size of the nymphs was considerably greater than in September.  相似文献   

7.
We studied antipredatory responses of lotic mayfly (Baetis) nymphs in a factorial experiment with four levels of fish presence: (1) a freely foraging fish (the European minnow,Phoxinus phoxinus), (2) a constrained fish, (3) water from a fish stream, (4) water from a fishless stream. LargeBaetis nymphs drifted mainly during night-time in treatments involving either the chemical or actual presence of fish, whereas no diel periodicity was observed when the water was not conditioned with fish odour. The response was strongest when the fish was uncaged, which suggests that visual or hydrodynamic cues are needed in addition to chemical ones for an accurate assessment of predation risk. Fish presence had no effect on the drift rates of small nymphs. Instead, they increased their refuge use in the presence of a live fish. Chemical cues alone did not have any effect on the refuge use of any of theBaetis size classes. Our results indicate active drift entry by mayfly nymphs. Because predation pressure is spatially and temporally variable, nymphs must sample the environment in order to locate predator-free areas or areas with low predation risk. Drifting should be the most energy-saving way to do this. To avoid the risk from visually feeding fish, large individuals can sample safely (i.e. enter drift) only at night-time, while the small ones can also do this safely during the day. We suggest that, contrary to some earlier assumptions, mayfly drift is not a fixed prey response. Instead,Baetis nymphs are able to assess the prevailing predation pressure, and they adjust their foraging behaviour accordingly.  相似文献   

8.
1. The diel foraging periodicities of two grazing mayfly (Ephemeroptera) nymphs, Heptagenia dalecarlica and Baetis rhodani, under variable fish (European minnow) predation risk were examined in a series of laboratory experiments. 2. Heptagenia dalecarlica were almost exclusively nocturnal in their use of feeding areas on stone tops. There was a sharp increase in the proportion of nymphs out of refuge at nightfall, both in the control and fish-odour treatments. In a treatment with freely moving fish, H. dalecarlica decreased their activity during both the day and night. In feeding trials with three freely foraging minnows, nymphs were completely safe when they had access to refuges beneath stones, whereas almost half the nymphs were consumed when no refuges were available. 3. Baetis rhodani nymphs reduced their use of stone tops when exposed to four caged minnows or a freely moving fish, but this occurred both day and night. In feeding trials, B. rhodani were captured only while in the water column, and their mortality risk was independent of refuge availability. 4. It is suggested that because H. dalecarlica lack efficient post-encounter defences, they must rely on pre-encounter mechanisms to reduce the threat of fish predation. It appears that in order to dwell sympatrically with fish, H. dalecarlica have evolved a coexistence by hiding strategy. In contrast, Baetis are vulnerable to fish attacks only if they enter drift in daylight, and are thus able to remain on stone tops both during the day and at night.  相似文献   

9.
The diets of the fish community of Trucka Brook, a small stream located in the central Adirondack Mountains in northern New York, were examined in relation to the bottom fauna and invertebrate drift. Measures of overlap were calculated between the diets of each fish species examined, brook trout (Salvelinus fontinalis), blacknose dace (Rhinichthys atratulus), creek chub (Semotilus atromaculatus) and pearl dace (Semotilus margarita). Overlap was also examined between the fish diets and bottom and drift samples. Blacknose dace, pearl dace and brook trout had the most similar diets which were closely associated with the benthos. Creek chub had the most distinctive diets which did not compare well with any other fish species during either diurnal or nocturnal periods. The mayfly nymph Litobranchia recurvata was the most abundant bottom invertebrate and was the major prey of benthic feeding fishes. The invertebrate drift did not compare favorably with any of the fishes' diets because of the predominance of large cased limnephilid larvae (primarily Psychoglypha sp.) which were not readily consumed by fish.  相似文献   

10.
A test of Allan's (1978) hypothesis about differential drift abundance of mayflies of the genus Baetis between night and day, and the size of larvae was performed at a mountain stream in Idaho. Palisades Creek, Idaho, contains a different species of mayfly, B. tricaudatus, and vertebrate predator, Salmo clarki, than Cement Creek, Colorado (B. bicaudatus, and brook trout, Salvelinus fontinalis). Consequently it was not known if B. tricaudatus would exhibit a similar pattern as its congener in Cement Creek, with large instars tending to avoid daylight drift, as found by Allan (1978). However, similar results were observed in the present study. It appears that the earlier hypothesis may have generality for geographically distinct streams with a different vertebrate predator and mayfly prey. The existence of a similar pattern for chironomid larvae was also tested, however, no such pattern existed. This discrepency between taxa may be due to differential predation, or to inherent differences in drift abilities.  相似文献   

11.
Nocturnal drift of mayfly nymphs as a post-contact antipredator mechanism   总被引:3,自引:0,他引:3  
1. The predominantly nocturnal constrained drift of stream invertebrates is commonly regarded as a behaviour that avoids encounters with visually foraging fish in the water column. The alternative explanation, that drift peaks are caused by bottom-feeding, nocturnal predators, has rarely been tested.
2. We examined these hypotheses by collecting invertebrate drift in five streams in northern Finland: one with brown trout ( Salmo trutta , a drift-feeding fish), one with alpine bullhead ( Cottus poecilopus , a benthic fish), one with both species, and two fishless streams.
3. Drift by Baetis mayflies was aperiodic or slightly diurnal in both fishless streams on all sampling occasions. In contrast, drift was nocturnal in streams with trout and, to a lesser extent, in the stream with bullhead. Non-dipteran prey drifted mainly nocturnally in all streams with fish, whereas Diptera larvae were less responsive to the presence of fish.
4. In laboratory experiments, bullheads were night-active, causing a much higher frequency of drift by touching Baetis at night than during the day. Thus, increased nocturnal drift may serve to avoid both visual predators (a pre-contact response) and benthic fish (a post-contact response). In streams with bottom-feeding fish, nocturnal drift should be caused by increased drift by night rather than by reduced drift by day.  相似文献   

12.
Experiments in laboratory stream channels compared the behaviour of Deleatidium mayfly nymphs in the absence of fish with that in the presence of either native common river galaxias (Galaxias vulgaris Stokell) or introduced brown trout (Salmo trutta L.). Galaxias present similar predation risks to prey during day and night but are more active at night. Whereas, trout present a higher predation risk during the day. Deleatidium maintained a fixed nocturnal drift periodicity that is characteristic of streams containing visually feeding fish regardless of the nature of the predation regime presented in the laboratory. However, the number on the substratum surface, and therefore able to graze algae, was lower when fish were present than when they were absent. The number was lower during the day in the presence of trout, when they present the highest predation risk, and lower during the night compared to the day in trials with galaxias when galaxias activity disturbs Deleatidium from the substratum. Increases in the probability of Deleatidium leaving a patch, reductions in the proportion of mayflies on high quality patches and reductions in the distance travelled from refuge also reflected variations in the predation regime. Similar differences in positioning were observed under the same predation regimes in in situ channels in the Shag River and these were associated with differences in algal biomass. Algal ash-free dry mass (AFDM) and chlorophyll a (chl a) were higher on the tops of cobbles when fish were present. Fish also affected the biomass and the distribution of algae on cobbles as AFDM and chl a were higher on the sides of cobbles from channels with trout compared to those with galaxias. Changes in grazing behaviour, caused by predator avoidance, are likely to have been responsible for differences in algal biomass because no significant differences were detected between treatments in the biomass of Deleatidium or of total invertebrates.  相似文献   

13.
Animal population dynamics in open systems are affected not only by agents of mortality and the influence of species interactions on behavior and life histories, but also by dispersal and recruitment. We used an extensive data set to compare natural loss rates of two mayfly species that co-occur in high-elevation streams varying in predation risk, and experience different abiotic conditions during larval development. Our goals were to generate hypotheses relating predation to variation in prey population dynamics and to evaluate alternative mechanisms to explain such variation. While neither loss rates nor abundance of the species that develops during snowmelt (Baetis bicaudatus) varied systematically with fish, loss rates of the species that develops during baseflow (Baetis B) were higher in streams containing brook trout than streams without fish; and surprisingly, larvae of this species were most abundant in trout streams. This counter-intuitive pattern could not be explained by a trophic cascade, because densities of intermediate predators (stoneflies) did not differ between fish and fishless streams and predation by trout on stoneflies was negligible. A statistical model estimated that higher recruitment and accelerated development enables Baetis B to maintain larger populations in trout streams despite higher mortality from predation. Experimental estimates suggested that predation by trout potentially accounts for natural losses of Baetis B, but not Baetis bicaudatus. Predation by stoneflies on Baetis is negligible in fish streams, but could make an important contribution to observed losses of both species in fishless streams. Non-predatory sources of loss were higher for B. bicaudatus in trout streams, and for Baetis B in fishless streams. We conclude that predation alone cannot explain variation in population dynamics of either species; and the relative importance of predation is species- and environment-specific compared to non-predatory losses, such as other agents of mortality and non-consumptive effects of predators. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Simultaneous collections of drift and organisms moving either upstream or downstream in association with the substrate were made using a specially designed sampler. Samples were taken in a diel series along a transect across the study riffle of a Colorado foothills stream on six dates over an annual cycle. In addition to longitudinal movements, taxonomic composition and diel periodicity were evaluated. The insect-dominated fauna showed a net downstream displacement. Only the caddisflies Helicopsyche borealis and Hesperophylax occidentalis exhibited net upstream movement, primarily a result of low drift frequencies. The taxonomic composition of moving invertebrates differed from that of the benthos. Drift resembled downstream moving substrate-associated invertebrates in composition, but differed from that of the upstream directed fauna. Taxa collectively exhibited four types of diel patterns: 1) similar downstream (drift and substrate-associated movements) patterns, which generally differed from the upstream pattern; 2) similar benthic (upstream and downstream) patterns, which differed from that of drift; 3) aperiodic patterns; and 4) independent patterns for each type of directional movement. Analysis of size classes based on head capsule width for the mayfly Baetis tricaudatus showed significantly smaller size in stationary individuals compared with moving individuals in the population and revealed that nymphs moving during the day were smaller than those moving at night.  相似文献   

15.
Drift as a low-energy cost means of migration may enable stream invertebrates to leave risky habitats or to escape after encountering a predator. While the control of the diurnal patterns of invertebrate drift activity by fish predators has received considerable interest, it remains unclear whether benthivorous fish reduce or increase drift activity. We performed a large-scale field experiment in a second-order stream to test if invertebrate drift was controlled by two benthivorous fish species (gudgeon Gobio gobio and stone loach Barbatula barbatula). An almost fishless reference reach was compared with a reach stocked with gudgeon and loach, and density and structure of the invertebrate communities in the benthos and in the drift were quantified in both reaches. The presence of gudgeon and stone loach reduced the nocturnal drift of larvae of the mayfly Baetis rhodani significantly, in contrast to the findings of most previous studies that fish predators induced higher night-time drift. Both drift density and relative drift activity of B. rhodani were lower at the fish reach during the study period that spanned 3 years. Total invertebrate drift was not reduced, by contrast, possibly due to differences in vulnerability to predation or mobility between the common invertebrate taxa. For instance, Chironomidae only showed a slight reduction in drift activity at the fish reach, and Oligochaeta showed no reduction at all. Although benthic community composition was similar at both reaches, drift composition differed significantly between reaches, implying that these differences were caused by behavioural changes of the invertebrates rather than by preferential fish consumption. The direction and intensity of changes in the drift activity of stream invertebrates in response to the presence of benthivorous fish may depend on the extent to which invertebrate taxa can control their drifting behaviour (i.e. active versus passive drift). We conclude that invertebrate drift is not always a mechanism of active escape from fish predators in natural streams, especially when benthos-feeding fish are present.  相似文献   

16.
Todd M. Palmer 《Oecologia》1995,104(4):476-486
Environmental heterogeneity can affect the behavior of organisms, but the consequences of patchiness for organismal energetics (e.g., growth, fitness) are not well understood. This study demonstrates that spatial heterogeneity can affect the growth of aquatic stream insects in laboratory streams, and reveals the behavioral mechanisms for these effects. In a 2×2 factorial design, I experimentally manipulated resource distribution (homogeneous vs. patchy, with the same overall resource levels) and current velocity (fast vs. slow) to investigate the direct and interactive effects of these factors on the drift behavior and growth of two mobile stream grazers, the mayflies Baetis bicaudatis and Epeorus deceptivus. B. bicaudatis nymphs grew larger in environments with homogeneously distributed resources than in patchy environments, and both species grew larger in fast than slow current environments. Patterns of drift behavior over the course of the study corresponded to observed differences in growth. Both species grew to larger body size in treatments where they drifted more successfully among substrates (fast-current treatments) and where they entered the drift less frequently (fast current for both species, and homogeneous treatments for B. bicaudatis). Overall, these results demonstrate that patchiness can significantly influence both the behavior of aquatic insects and the size to which these insects grow. In the light of previously published relationships between nymphal mayfly body mass and fecundity, these results suggest that patchiness in streams may have important consequences for mayfly populations.  相似文献   

17.
The diel activity patterns of fishes in a temperate New Brunswick stream were studied during the summer over 5 years. Young‐of‐the year Atlantic salmon Salmo salar and blacknose dace Rhinichthys atratulus were more active during the day than at night, whereas lake chub Couesius plumbeus, brook trout Salvelinus fontinalis and adult white suckers Catostomus commersonii were more active at night than during the day. Because fishes were as likely to be nocturnal as diurnal, the data suggest that more night‐time sampling is needed to provide an unbiased view of fish community structure in temperate streams.  相似文献   

18.
Food resource partitioning between similar‐sized, sympatric Atlantic salmon Salmo salar and brook trout Salvelinus fontinalis was examined as a possible mechanism enabling their coexistence in a stream (Allaire) of the Sainte‐Marguerite River ecosystem, Quebec, Canada. Fish stomach contents and invertebrate drift were collected concurrently during three diel cycles in August to September 1996. The food and feeding habits of an allopatric brook trout population in a nearby stream (Epinette) were studied for comparison. The diel feeding rhythms of the two coexisting fish species were similar. The composition of their diet, however, showed significant differences. Atlantic salmon predominantly (60–90%) fed on aquatic insects, mainly Ephemeroptera (35–60% of the diet). The brook trout mostly (50–80%) fed upon the allochthonous terrestrial insects (mainly adults of Coleoptera, Hymenoptera and Diptera) which comprised 5–40% of the stream drift. The allopatric brook trout fed opportunistically on the more abundant aquatic insects and terrestrial insects rarely formed 25% of its diet. The allopatric trout fed nearly twice as much as the sympatric brook trout during a day. The results suggest that the differences in feeding by brook trout in the two streams (with and without Atlantic salmon) are the result of inter‐specific interaction with Atlantic salmon and are not related to the differences in food availability between the two streams. Food resource partitioning between Atlantic salmon and brook trout may be viewed as an adaptive response resulting in a greater exploitation of available resources and coexistence.  相似文献   

19.
Summary Mayfly larvae of Paraleptophlebia heteronea (McDunnough) had two antipredator responses to a nocturnal fish predator (Rhinichthys cataractae (Valenciennes)): flight into the drift and retreat into interstitial crevices. Drift rates of Paraleptophlebia abruptly increased by 30 fold when fish were actively foraging in the laboratory streams but, even before fish were removed, drift began returning to control levels because larvae settled to the substrate and moved to areas of low risk beneath stones. This drifting response was used as an immediate escape behavior which likely decreases risk of capture from predators which forage actively at night. Surprisingly, drift most often occurred before contact between predator and prey, and we suggest that in darkness this mayfly may use hydrodynamic pressure waves for predator detection, rather than chemical cues, since fish forage in an upstream direction. Although drifting may represent a cost to mayfly larvae in terms of relocation to a new foraging area with unknown food resources, the immediate mortality risk probably out-weighs the importance of staying within a profitable food patch because larvae can survive starvation for at least 2 d. In addition to drifting, mayflies retreated from upper, exposed substrate surfaces to concealed interstitial crevices immediately after a predator encounter, or subsequent to resettlement on the substrate after predator-induced drift. A latency period was associated with this response and mayflies remained in these concealed locations for at least 3 h after dace foraging ceased. Because this mayfly feeds at night and food levels are significantly lower in field refugia under stones, relative to exposed stone surfaces, predator avoidance activity may limit foraging time and, ultimately, reduce the food intake of this stream mayfly.  相似文献   

20.
1. Ecologists have struggled to describe general patterns in the impacts of predators on stream prey, particularly at large, realistic spatial and temporal scales. Among the confounding variables in many systems is the presence of multiple predators whose interactions can be complex and unpredictable. 2. We studied the interactions between brook trout (Salvelinus fontinalis) and larval two‐lined salamanders (Eurycea bislineata), two dominant vertebrate predators in New England stream systems, by examining patterns of two‐lined salamander abundance in stream reaches above and below waterfalls that are barriers to fish dispersal, by measuring the effects of trout on salamander density and activity using a large‐scale manipulation of brook trout presence, and by conducting a small‐scale laboratory experiment to study how brook trout and larval two‐lined salamanders affect each other's prey consumption. 3. We captured more salamanders above waterfalls, in the absence of trout, than below waterfalls where trout were present. Salamander density and daytime activity decreased following trout addition to streams, and salamander activity shifted from aperiodic to more nocturnal with fish. Analysis of stomach contents from our laboratory experiment revealed that salamanders eat fewer prey with trout, but trout eat more prey in the presence of salamanders. 4. We suggest that as predators in streams, salamanders can influence invertebrate prey communities both directly and through density‐ and trait‐mediated interactions with other predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号