首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low soil water potential and low or high root temperatures are important stresses affecting carbon allocation in plants. This study examines the effects of these stresses on carbon allocation from the perspective of whole plant mass balance. Sixteen-day old spring wheat seedlings were placed in a growth room under precisely controlled root temperatures and soil water potentials. Five soil water potential treatments, from −0.03 MPa to −0.25 MPa, and six root temperature treatments, from 12 to 32°C were used. A mathematical model based on mass balance considerations was used, in combination with experimental measurements of rate of net photosynthesis, leaf area, and shoot/root dry masses to determine photosynthate allocation between shoot and root. Partitioning of photosynthates to roots was the lowest at 22–27°C root temperature regardless soil water potential, and increased at both lower and higher root temperatures. Partitioning of photosynthates to the roots increased with decreasing soil water potential. Under the most favourable conditions, i.e. at −0.03 MPa soil water potential and 27°C root temperature, the largest fraction, 57%, of photosynthates was allocated to the shoots. Under the most stressed conditions, i.e. at −0.25 MPa soil water potential and 32°C root temperature, the largest fraction, more than 80%, of photosynthates was allocated to roots.  相似文献   

2.
Influence of root density on the critical soil water potential   总被引:1,自引:1,他引:0  
Estimation of root water uptake in crops is important for making many other agricultural predictions. This estimation often involves two assumptions: (1) that a critical soil water potential exists which is constant for a given combination of soil and crop and which does not depend on root length density, and (2) that the local root water uptake at given soil water potential is proportional to root length density. Recent results of both mathematical modeling and computer tomography show that these assumptions may not be valid when the soil water potential is averaged over a volume of soil containing roots. We tested these assumptions for plants with distinctly different root systems. Root water uptake rates and the critical soil water potential values were determined in several adjacent soil layers for horse bean (Vicia faba) and oat (Avena sativa) grown in lysimeters, and for field-grown cotton (Gossypium L.), maize (Zea mays) and alfalfa (Medicago sativa L.) crops. Root water uptake was calculated from the water balance of each layer in lysimeters. Water uptake rate was proportional to root length density at high soil water potentials, for both horse bean and oat plants, but root water uptake did not depend on root density for horse bean at potentials lower than −25 kPa. We observed a linear dependency of a critical soil water potential on the logarithm of root length density for all plants studied. Soil texture modified the critical water potential values, but not the linearity of the relationship. B E Clothier Section editor  相似文献   

3.
Abstract. A model of water flow from the soil into the plant, and from the plant to the atmosphere is described. There are three state variables in the model: the soil, root and shoot water contents. The flow rate of water from the soil to the root is calculated by dividing the gradient in water potential by a resistance, comprising the resistance from the bulk soil to the root surface, and that from the root surface to the root interior. The resistance in the soil depends on the soil hydraulic conductivity, which in turn depends on the soil water potential. The flow rate from the root to the shoot is given by the gradient in water potential divided by a resistance, which depends on the structural dry mass of the plant. Transpiration is described by the Penman-Monteith equation. The plant water characteristics can be modified to take account of osmotic and cell wall rigidity parameters. The model incorporates the concept of shoot/root ‘messages’ of water stress, which influence stomatal conductance. The message works through the generation of a hormone as the pressure potential in the shoot (mesophyll) or root falls. This hormone induces a shift of osmoticum from the guard cells to the surrounding mesophyll cells, which causes an increase (i.e. closer to zero) in the osmotic potential in these cells. This, in turn, causes a decrease in their pressure potential, and so reduces stomatal conductance. The model is used as a framework to address some of the issues that have recently been raised concerning the role of water potential in describing water flow through plants. We conclude that, with the hormone present, there is unlikely to be a unique relationship between stomatal conductance and shoot total water potential, since stomatal conductance depends on the pressure potential in the guard cells, which may differ from that in other cells. Nevertheless, this does not imply that water potential is not an important, and indeed fundamental, component for describing water flow through plants. Other aspects of water flow through plants are also considered, such as diurnal patterns of shoot, root and soil water potential components. It is seen that these may differ from the commonly held view that, as the soil dries down, they all attain the same values during the dark period, and which, as we show, is largely unsubstantiated either theoretically or experimentally.  相似文献   

4.
An equivalent circuit was developed to model the radial electrical coupling between root cells. The results of several experiments were analysed using the circuit to determine whether the electrogenic pumps of the inner cortical cells were active. This analysis indicated that, while in some roots electrogenic pumps appear to be active in all cortical layers, they may be inactive in the inner cortical cells in some cases. The circuit was used to show that, in spite of intercellular symplasmic coupling, if the inner cortical cells have inactive electrogenic pumps, their membrane potentials can be significantly less negative than those of the epidermal cells. The radial difference in membrane potential may in part account for observations that the uptake of ions occurs primarily on the root periphery. This implication is developed in an appendix to show that an osmotic water pump may exist in roots to allow them to extract water from soil at a lower water potential. It is hypothesized that, as a result of a radial difference in membrane potential, there is an efflux of solutes from the inner cortical cells as the symplastic solution moves inward. As a result, the water potential of the root interior is elevated with respect to its exterior.  相似文献   

5.
Influence of temperature and water potential on root growth of white oak   总被引:11,自引:0,他引:11  
Root growth of white oak ( Quercus alba L.) was observed under field conditions using a rhizotron. The effects of temperature, soil water potential, and leaf water potential were evaluated on three measures of root growth and development: root elongation rate, number of growing roots, and root growth intensity (sum of projected root area compared to the total root viewing area). Root elongation rate was linearly related to changes in soil temperature and soil water potential. At soil temperatures less than 17deg;C, temperature was the dominant factor affecting rate of growth, bat at temperatures greater than 17°C soil water potential became the important factor. Unlike root elongation rate, the number of growing roots and root growth intensity increased at cold soil temperatures (8°C) and at soil water potentials of-0.3 to -0.8 MPa. At high soil water potentials (-0.1 MPa) root elongation rate reached a maximum while the number of growing roots and root growth intensity were low. These differences showed that root growth and development were not exclusively affected by the soil environment. In addition, the relationship between root growth and predawn leaf water potential suggested that root growth was a contributing factor to the drought resistance of white oak.  相似文献   

6.
Uptake of soil water by plants may result in significant gradients between bulk soil and soil in the vicinity of roots. Few experimental studies of water potential gradients in close proximity to roots, and no studies on the relationship of water potential gradients to the root and leaf water potentials, have been conducted. The occurrence and importance of pre-dawn gradients in the soil and their relation to the pre-dawn root and leaf water potentials were investigated with seedlings of four species. Pre-germinated seeds were grown without watering for 7 and lid in a silt loam soil with initial soil matric potentials of -0.02, -0.1 and -0.22 MPa. Significant gradients, independent of the species, were observed only at pre-dawn soil matric potentials lower than -0.25 MPa; the initial soil matric potentials were -0.1 MPa. At an initial bulk soil matric potential of -0.22 MPa, a steep gradient between bulk and rhizoplane soil was observed after 7 d for maize (Zea mays L. cv. Issa) and sunflower (Helianthus annuus L. cv. Nanus), in contrast to barley (Hordeum vulgare L. cv. Athos) and wheat (Triticum aestivum L. cv. Kolibri). Pre-dawn root water potentials were usually about the same as the bulk soil matric potential and were higher than the rhizoplane soil matric potential. Pre-dawn root and leaf water potentials tended to be much higher than rhizoplane soil matric potentials when the latter were lower than -0.5 MPa. It is concluded that plants tend to become equilibrated overnight with the wetter bulk soil or with wetter zones in the bulk soil. Plants can thus circumvent negative effects of localized steep pre-dawn soil matric potential gradients. This may be of considerable importance for water uptake and growth in drying soil.  相似文献   

7.
Physical properties of axenic maize root mucilage   总被引:2,自引:0,他引:2  
Read  D.B.  Gregory  P.J.  Bell  A.E. 《Plant and Soil》1999,211(1):87-91
Root mucilage was collected from 3–4 day-old axenically-grown maize seedlings (Zea mays L. cv. Freya). The water potential of the hydrated mucilage was measured by thermocouple psychrometry and the rheology at low deformation rates was studied using an oscillating cone and plate rheometer which provides information on both the elastic and viscous components of its behaviour. Water potential decreased as mucilage solute concentration increased, reaching a value of −60kPa at 1.2 mg mL−1. At the lowest oscillation rate, the mucilage had a dynamic viscosity of 145 mPa s and behaved as a weak viscoelastic gel. After filtration to remove suspended root cap cells and other solid plant material, mucilage viscosity was reduced to 5–10 mPa s at low oscillation rates and the behaviour was that of a viscous liquid. The decrease in viscosity which occurs on filtration indicates that the root cap cells form an integral part of the gel system, either by interacting directly with each other or via the polysaccharide. Our observations provide further support for the idea that mucilage plays a major role in maintaining root-soil contact in the rhizosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Effect of root anaerobiosis on the water relations of several Pyrus species   总被引:2,自引:0,他引:2  
Solution culture experiments were designed to investigate the plant water relations of 3 Pyrus species subjected to root anaerobiosis. Root anaerobiosis induced partial stomatal closure prior to alterations in leaf water potential (ΨLW) or root osmotic potential (ΨRπ). In contrast, stomatal closure was accompanied by a decline in root hydraulic conductivity (Lp). Anoxia markedly reduced ΨLW for Pyrus communis L. and eventually led to wilting and defoliation. Pyrus betulaefolia Bunge and Pyrus calleryana Decne, however, were less affected by root anaerobiosis. To delineate if the increased root resistance was in the radial or longitudinal direction, 10−4 M cistrans abscisic acid (ABA) was added to detopped root systems of P. communis in solution culture after steady-state rates of Lp were established. A consistent 25 to 30% promotion of Lp was observed 1.5 h after the addition of ABA for aerobically treated plants. ABA did not influence Lp when applied to roots previously deprived of O2 for 4 days. Additional evidence against the limiting resistance being in the radial direction was obtained when water fluxes were compared through intact P. communis roots, roots with all feeder roots detached, and stems without root systems. Severing feeder roots from anaerobically treated plants did not increase water flux to rates observed for aerobically treated plants. Resistance progressed basipetally to eventually encompass the stem itself. These results can only be explained by occlusion of the xylem vessels.  相似文献   

9.
Sequence of drought response of maize seedlings in drying soil   总被引:2,自引:0,他引:2  
Leaf elongation in monocotyledonous plants is sensitive to drought. To better understand the sequence of events in plants subjected to soil drying, leaf elongation and transpiration of maize seedlings ( Zea mays L.) of 4 cultivars were monitored continuously and the diurnal courses of the root and leaf water relations were determined. Results from this study indicate the following sequence of drought response: Leaf elongation decreased before changes in the leaf water relations of non‐growing zones of leaf blades were detected and before transpiration decreased. Reductions in leaf elongation preceded changes in the root water potential (ψw). Root ψw was not a very sensitive indicator of soil dryness, whereas the root osmotic potential (ψs) and root turgor (ψp) were more sensitive indicators. The earliest events observed in drying soil were a significant increase in the largest root diameter class (1 720 to 1 960 gm) and a decrease in leaf elongation ( P = 0.08) 2 days after withholding water. Significant increases in root length were observed 2 days later. Soil drying increased the number of fine roots with diameters of <240 µm. Slight increases in soil strength did not affect leaf elongation in the drying soil.  相似文献   

10.
Water uptake profile response of corn to soil moisture depletion   总被引:6,自引:1,他引:5  
The effects of soil moisture distribution on water uptake of drip‐irrigated corn were investigated by simultaneously monitoring the diurnal evolution of sap flow rate in stems, of leaf water potential, and of soil moisture, during intervals between successive irrigations. The results invalidate the steady‐state resistive flow model for the continuum. High hydraulic capacitance of wet soil and low hydraulic conductivity of dry soil surrounding the roots damped significantly diurnal fluctuations of water flow from bulk soil to root surface. By contrast, sap flow responded directly to the large diurnal variation of leaf water potential. In wet soil, the relation between the diurnal courses of uptake rates and leaf water potential was linear. Water potential at the root surface remained nearly constant and uniformly distributed. The slope of the lines allowed calculating the resistance of the hydraulic path in the plant. Resistances increased in inverse relation with root length density. Soil desiccation induced a diurnal variation of water potential at the root surface, the minimum occurring in the late afternoon. The increase of root surface water potential with depth was directly linked to the soil desiccation profile. The development of a water potential gradient at the root surface implies the presence of a significant axial resistance in the root hydraulic path that explains why the desiccation of the soil upper layer induces an absolute increase of water uptake rates from the deeper wet layers.  相似文献   

11.
An experiment was conducted to determine soil and plant resistance to water flow in faba bean under field conditions during the growing season. During each sampling period transpiration flux and leaf water potential measured hourly were used with daily measurements of root and soil water potential to calculate total resistance using Ohm's law analogy. Plant growth, root density and soil water content distributions with depth were measured. Leaf area and root length per plant reached their maximum value during flowering and pod setting (0.31 m2 and 2200 m, respectively), then decreasing until the end of the growing period. Root distribution decreased with depth ranging, on average, between 34.2% (in the 0–0.25 m soil layer) and 18.1% (in the 0.75–1.0 m soil layer). Mean root diameter was 0.6 mm but most of the roots were less than 0.7 mm in diameter. Changes in plant and soil water potentials reflected plant growth characteristics and climatic patterns. The overall relationship between the difference in water potential between soil and leaf and transpiration was linear, with the slope equal to average plant resistance (0.0165 MPa/(cm3 m-1 h-1 10-3). Different regression parameters were obtained for the various measurement days. The water potential difference was inversely related to transpiration at high leaf stomatal resistance and at high values of VPD. Total resistance decreased with transpiration flux in a linear relationship (r=−0.68). Different slope values were obtained for the different measurement days. Estimated soil resistance was much lower than the observed total resistance to water flow. The change from vegetative growth to pod filling was accompanied by an increase in plant resistance. The experimental results support previous findings that resistance to water flow through plants is not constant but is influenced by plant age, growth stage and environmental conditions. A more complex model than Ohm's law analogy may be necessary for describing the dynamic flow system under field conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Understanding how root system architecture (RSA) adapts to changing nitrogen and water availability is important for improving acquisition. A sand rhizotron system was developed to study RSA in a porous substrate under tightly regulated nutrient supply. The RSA of Arabidopsis seedlings under differing nitrate (NO3) and water supplies in agar and sand was described. The hydraulic conductivity of the root environment was manipulated by using altered sand particle size and matric potentials. Ion‐selective microelectrodes were used to quantify NO3 at the surface of growing primary roots in sands of different particle sizes. Differences in RSA were observed between seedlings grown on agar and sand, and the influence of NO3 (0.1–10.0 mm ) and water on RSA was determined. Primary root length (PRL) was a function of water flux and independent of NO3. The percentage of roots with laterals correlated with water flux, whereas NO3 supply was important for basal root (BR) growth. In agar and sand, the NO3 activities at the root surface were higher than those supplied in the nutrient solution. The sand rhizotron system is a useful tool for the study of RSA, providing a porous growth environment that can be used to simulate the effects of hydraulic conductivity on growth.  相似文献   

13.
在根组织细胞分裂和细胞体积增大亚过程基础上,建立了一个综合根生长特征参数和环境影响在内的单根伸长的数学模型,同时实验观测了大豆根在不同的环境水势下的生长过程。模型计算结果与实验结果吻合较好。最后利用模型探讨了根伸长对环境因子变化的响应,以及根内水势分布。  相似文献   

14.
How much ABA can be supplied by the roots is a key issue for modelling the ABA-mediated influence of drought on shoot physiology. We quantified accumulation rates of ABA ( S ABA) in maize roots that were detached from well-watered plants and dehydrated to various extents by air-drying. S ABA was estimated from changes in ABA content in root segments incubated at constant relative water content (RWC). Categories of root segments, differing in age and branching order, were compared (root branches, and nodal roots subdivided into root tips, subapical unbranched sections, and mature sections). All categories of roots accumulated ABA, including turgid and mature tissues containing no apex. S ABA measured in turgid roots changed with root age and among root categories. This variability was largely accounted for by differences in water content among different categories of turgid roots. The response of S ABA to changes in root water potential ( Ψ root) induced by dehydration was common to root tips, nodal roots and branches of several ages, while this was not the case if root dehydration was expressed in terms of RWC. Differences among root categories in the response of S ABA to RWC were due to different RWC values among categories at a given Ψ root, and not to differences in the response of S ABA to Ψ root.  相似文献   

15.
We have appraised for clumped root systems the widely-accepted view that the resistance to water flux from soil to roots (‘soil resistance’) is low under most field conditions, so that root water potential would closely follow the mean soil water potential. Three root spatial arrangements were studied, simulating either the regular pattern generally assumed in models, or two degrees of root clumping frequently observed in the field. We used a numerical 2-dimensional model of water transfer which assumes a control of evapotranspiration by root signalling. Calculations were carried out at two evaporative demands and for two contrasting soil hydraulic properties. The rate of soil depletion, the timing of the reduction in evapotranspiration and the difference between root water potential and mean soil water potential were all affected by the root spatial arrangement, with a greater effect at high evaporative demand and low soil hydraulic conductivity. Almost all the soil water reserve was available to plants without reduction in evapotranspiration in the regular case, while only a part of it was available in clumped cases. In the regular case, calculated ‘soil resistances’ were similar to those calculated using Newman's (1969) method. Conversely they were higher by up to two orders of magnitude in clumped root spatial arrangements. These results place doubt on the generality of the view that ‘soil resistance’ is low under common field conditions. They are consistent with the results of field experiments, especially with recent data dealing with root-to-shoot communication.  相似文献   

16.
Erkki Aura 《Plant and Soil》1996,186(2):237-243
The assumption of uniform water flow to the root or uniform water potential at the root surface was shown by Hainsworth and Aylmore (1986, 1989) to be erroneous. The present paper demonstrates how the non-uniform uptake of water by a single root can be modeled. Differential equations are numerically solved to describe simultaneous water movement in the plant and in the soil. In the plant, boundary conditions are the water potentials at the root surface (Ψs) and in the xylem at the root base (Ψb). A set of difference equations describe the flow of water radially through the cortex to the xylem and in the xylem axially upwards to the base. For calculating the water flow in the soil and the values of Ψs, i.e. the boundary conditions for flow in the root, the finite element method (FEM) is used, the boundary conditions being the flux of water into the plant root and the zero flow across the wall, bottom and surface of a hypothetical soil cylinder surrounding the root. ei]Section editor: B E Clothier  相似文献   

17.
Water uptake regulation in peach trees with split-root systems   总被引:3,自引:2,他引:1  
The water uptake of 3- to 4-year-old peach trees ‘May-crest/Prunus Damas’ grown in an aerated nutrient solution was studied using a split-root system. Each container and the whole tree were weighed independently to measure water absorption by both parts of the root system and tree transpiration. Water potential of leaves was measured with a pressure chamber. Water potential of roots was estimated using root suckers sealed in plastic bags before the measurement. The nutrient solution was removed from one container so that half the root system was left in humid air for 48 h. Water potential of roots left in solution decreased, which (partly) maintained water absorption and thus transpiration. No modification of root hydraulic resistance was required to simulate the experimental results. Nevertheless, enhancement of absorption by the roots supplied with solution cannot compensate for the water loss by transpiration. Depletion of water from the plant essentially came from the non-absorbing roots. This was demonstrated by substituting vegetable oil for nutrient solution around one half of the split-root system, and by following the changes in root volume on the basis of Archimedes principle. Conflicting results in the literature about apparent changes in hydraulic resistance are discussed.  相似文献   

18.
马守臣  徐炳成  李凤民  黄占斌 《生态学报》2008,28(12):6172-6179
通过田间试验研究了不同时期根修剪处理对冬小麦(Triticum aestivum)根系大小与分布、根系效率、水分利用效率及产量形成的影响。设置4个根修剪处理:越冬期小剪根(WS)、越冬期大剪根(WB),返青期小剪根(GS)、返青期大剪根(GB),未剪根小麦作为对照(CK)。结果表明,到花期时,各根修剪处理小麦的在0~120cm总根量均显著小于对照。与对照相比各根修剪处理主要是显著地减少了上层土壤中的根量。但WS和GS两小剪根处理和对照相比在中层土壤中有较大的根量;花后各处理小麦旗叶的气孔导度和蒸腾速率均显著大于对照。这说明根修剪处理减少了小麦表层的根量,从而削弱了表土干旱信号对作物与外界气体交换的抑制作用。花期时各根修剪小麦的净光合速率均显著高于对照,而单位面积上的根呼吸速率均显著小于对照,根修剪处理提高了小麦的根系效率,使更多的光合产物用于籽粒生产,从而提高了小麦的收获指数。根修剪还提高了小麦的水分利用效率,其中WS、WB、GS处理的水分利用效率显著高于对照。但是GB处理的水分利用效率却没有显著提高。因此,本研究进一步证明了由不同年代品种得到的推测,认为在旱地农业中,通过遗传育种或采用适当农艺措施优化根系分布,既可以减少生长前期作物对水分的过度消耗,又能够削弱花后表土过度干旱对作物生长抑制作用,同时降低根系对同化产物的消耗,对作物产量及水分利用效率的提高具有积极的作用。  相似文献   

19.
Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field.Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars.Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals.Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models.  相似文献   

20.
Redistribution of water within plants could mitigate drought stress of roots in zones of low soil moisture. Plant internal redistribution of water from regions of high soil moisture to roots in dry soil occurs during periods of low evaporative demand. Using minirhizotrons, we observed similar lifespans of roots in wet and dry soil for the grapevine 'Merlot' (Vitis vinifera) on the rootstock 101-14 Millardet de Gramanet (Vitis riparia x Vitis rupestris) in a Napa County, California vineyard. We hypothesized that hydraulic redistribution would prevent an appreciable reduction in root water potential and would contribute to prolonged root survivorship in dry soil zones. In a greenhouse study that tested this hypothesis, grapevine root systems were divided using split pots and were grown for 6 months. With thermocouple psychrometers, we measured water potentials of roots of the same plant in both wet and dry soil under three treatments: control (C), 24 h light + supplemental water (LW) and 24 h light only (L). Similar to the field results, roots in the dry side of split pots had similar survivorship as roots in the wet side of the split pots (P = 0.136) in the C treatment. In contrast, reduced root survivorship was directly associated with plants in which hydraulic redistribution was experimentally reduced by 24 h light. Dry-side roots of plants in the LW treatment lived half as long as the roots in the wet soil despite being provided with supplemental water (P < 0.0004). Additionally, pre-dawn water potentials of roots in dry soil under 24 h of illumination (L and LW) exhibited values nearly twice as negative as those of C plants (P = 0.034). Estimates of root membrane integrity using electrolyte leakage were consistent with patterns of root survivorship. Plants in which nocturnal hydraulic redistribution was reduced exhibited more than twice the amount of electrolyte leakage in dry roots compared to those in wet soil of the same plant. Our study demonstrates that besides a number of ecological advantages to protecting tissues against desiccation, internal hydraulic redistribution of water is a mechanism consistent with extended root survivorship in dry soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号