首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlamydomonas reinhardtii adapts to copper deficiency by degrading apoplastocyanin and inducing Cyc6 and Cpx1 encoding cytochrome c(6) and coproporphyrinogen oxidase, respectively. To identify other components in this pathway, colonies resulting from insertional mutagenesis were screened for copper- conditional phenotypes. Twelve crd (copper response defect) strains were identified. In copper-deficient conditions, the crd strains fail to accumulate photosystem I and light-harvesting complex I, and they contain reduced amounts of light-harvesting complex II. Cyc6, Cpx1 expression and plastocyanin accumulation remain copper responsive. The crd phenotype is rescued by a similar amount of copper as is required for repression of Cyc6 and Cpx1 and for maintenance of plastocyanin at its usual stoichiometry, suggesting that the affected gene is a target of the same signal transduction pathway. The crd strains represent alleles at a single locus, CRD1, which encodes a 47 kDa, hydrophilic protein with a consensus carboxylate-bridged di-iron binding site. Crd1 homologs are present in the genomes of photosynthetic organisms. In Chlamydomonas, Crd1 expression is activated in copper- or oxygen-deficient cells, and Crd1 function is required for adaptation to these conditions.  相似文献   

2.
3.
The Cpx1 and Cyc6 genes of Chlamydomonas reinhardtii are activated in copper-deficient cells via a signal transduction pathway that requires copper response elements (CuREs) and a copper response regulator defined by the CRR1 locus. The two genes can also be activated by provision of nickel or cobalt ions in the medium. The response to nickel ions requires at least one CuRE and also CRR1 function, suggesting that nickel interferes with a component in the nutritional copper signal transduction pathway. Nickel does not act by preventing copper uptake/utilization because (i) holoplastocyanin formation is unaffected in Ni2+-treated cells and (ii) provision of excess copper cannot reverse the Ni-dependent activation of the target genes. The CuRE is sufficient for conferring Ni-responsive expression to a reporter gene, which suggests that the system has practical application as a vehicle for inducible gene expression. The inducer can be removed either by replacing the medium or by chelating the inducer with excess EDTA, either of which treatments reverses the activation of the target genes.  相似文献   

4.
5.
6.
7.
8.
The sequence and organization of the Chlamydomonas reinhardtii genes encoding cytochrome c(1) ( Cyc1) and the Rieske-type iron-sulfur protein ( Isp), two key nucleus-encoded subunits of the mitochondrial cytochrome bc(1) complex, are presented. Southern hybridization analysis indicates that both Cyc1 and Isp are present as single-copy genes in C. reinhardtii. The Cyc1 gene spans 6404 bp and contains six introns, ranging from 178 to 1134 bp in size. The Isp gene spans 1238 bp and contains four smaller introns, ranging in length from 83 to 167 bp. In both genes, the intron/exon junctions follow the GT/AG rule. Internal conserved sequences were identified in only some of the introns in the Cyc1 gene. The levels of expression of Isp and Cyc1 genes are comparable in wild-type C. reinhardtii cells and in a mutant strain carrying a deletion in the mitochondrial gene for cytochrome b (dum-1). Nevertheless, no accumulation of the nucleus-encoded cytochrome c(1) or of core proteins I and II was observed in the membranes of the respiratory mutant. These data show that, in the green alga C. reinhardtii, the subunits of the cytochrome bc(1) complex fail to assemble properly in the absence of cytochrome b.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
K L Hill  R Hassett  D Kosman    S Merchant 《Plant physiology》1996,112(2):697-704
A saturable and temperature-dependent copper uptake pathway has been identified in Chlamydomonas reinhardtii. The uptake system has a high affinity for copper ions (Km approximately 0.2 microM) and is more active in cells that are adapted to copper deficiency than to cells grown in a medium containing physiological (submicromolar to micromolar) copper ion concentrations. The maximum velocity of copper uptake by copper-deficient cells (169 pmol h-1 10(6) cells-1 or 62 ng min-1 mg-1 chlorophyll) is up to 20-fold greater than that of fully copper-supplemented cells, and the Km (approximately 2 x 10(2) nM) is unaffected. Thus, the same uptake system appears to operate in both copper-replete and copper-deficient cells, but its expression or activity must be induced under copper-deficient conditions. A cupric reductase activity is also increased in copper-deficient compared with copper-sufficient cells. The physiological characteristics of the regulation of this cupric reductase are compatible with its involvement in the uptake pathway. Despite the operation of the uptake pathway under both copper-replete and copper-deficient conditions, C. reinhardtii cells maintained in fully copper-supplemented cells do not accumulate copper in excess of their metabolic need. These results provide evidence for a homeostatic mechanism for copper metabolism in C. reinhardtii.  相似文献   

17.
In an aerobic environment, responding to oxidative cues is critical for physiological adaptation (acclimation) to changing environmental conditions. The unicellular alga Chlamydomonas reinhardtii was tested for the ability to acclimate to specific forms of oxidative stress. Acclimation was defined as the ability of a sublethal pretreatment with a reactive oxygen species to activate defense responses that subsequently enhance survival of that stress. C. reinhardtii exhibited a strong acclimation response to rose bengal, a photosensitizing dye that produces singlet oxygen. This acclimation was dependent upon photosensitization and occurred only when pretreatment was administered in the light. Shifting cells from low light to high light also enhanced resistance to singlet oxygen, suggesting an overlap in high-light and singlet oxygen response pathways. Microarray analysis of RNA levels indicated that a relatively small number of genes respond to sublethal levels of singlet oxygen. Constitutive overexpression of either of two such genes, a glutathione peroxidase gene and a glutathione S-transferase gene, was sufficient to enhance singlet oxygen resistance. Escherichia coli and Saccharomyces cerevisiae exhibit well-defined responses to reactive oxygen but did not acclimate to singlet oxygen, possibly reflecting the relative importance of singlet oxygen stress for photosynthetic organisms.  相似文献   

18.
19.
20.
Escherichia coli uses overlapping envelope stress responses to adapt to insults to the bacterial envelope that cause protein misfolding. The sigmaE and Cpx envelope stress responses are activated by both common and distinct envelope stresses and respond by increasing the expression of the periplasmic protease DegP as well as target genes unique to each response. The sigmaE pathway is involved in outer membrane protein (OMP) folding quality control whereas the Cpx pathway plays an important role in the assembly of at least one pilus. Previously, we identified the spy gene as a new Cpx regulon member of unknown function. Interestingly, induction of spy expression by severe envelope stresses such as spheroplasting is only partially dependent on an intact Cpx signalling pathway, unlike other Cpx-regulated genes. Here we show that the BaeS sensor kinase and BaeR response regulator also control expression of spy in response to envelope stress. BaeS and BaeR do not affect expression of other known Cpx-regulated genes, however, baeR cpxR double mutants show increased sensitivity to envelope stresses relative to either single mutant alone. We propose that the Bae signal transduction pathway controls a third envelope stress response in E. coli that induces expression of a distinct set of adaptive genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号