首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. E. Hershey 《Oecologia》1987,73(2):236-241
Summary In laboratory experiments, I studied differential susceptibility of four co-occurring species of chironomids to a predatory damselfly. The chironomids differed in foraging behavior and could be ranked according to the amount of time they spent outside of their tubes. In choice experiments, the predator consistently selected the prey which spent more time out of the tube, and time out of tube was a significant predictor of the predation rate coefficient. Electivity indices, calculated from field samples and diet analyses of the predator, supported the laboratory results. The data suggest that exposure to predators in a heterogeneous prey community is largely determined by tubedwelling behavior.  相似文献   

2.
Low densities of Diaptomus ashlandi, Diacyclops thomasi, and Daphnia galeata mendotae were measured at depths where Mysis relicta formed nighttime aggregations. Calculations suggest that mysid predation can not account for the rarity of prey animals at these depths, which further suggests that the prey avoided the mysids. Unlike D. galeata mendotae, Daphnia pulicaria was common in mysid aggregations. The somewhat larger size of D. pulicaria may reduce its vulnerability to mysid predation, and consequently may explain the vertical distribution differences between the two congeners. Vertical distributions of Limnocalanus macrurus and copepod nauplii showed no obvious relationships to the mysid distributions. These were the only two taxa with distributions that were correlated with chlorophyll a concentrations. All crustacean taxa were rare in the epilimnion at night when sonar recorded a dense fish school.  相似文献   

3.
4.
Summary In situations where foraging sites vary both in food reward and predation risk, conventional optimal foraging models based on the criterion of maximizing net rate of energy intake commonly fail to predict patch choice by foragers. Recently, an alternative model based on the simple rule when foraging, minimize the ratio of mortality rate (u) to foraging rate (f) was successful in predicting patch preference under such conditions (Gilliam and Fraser 1987). In the present study, I compare the predictive ability of these two models under conditions where available patches vary both in predation hazard and foraging returns. Juvenile bluegill sunfish (Lepomis macrochirus) were presented with a choice between two patches of artificial vegetation differing in stem density (i.e. 100, 250, and 500 stems/m2) in which to forage. Each combination (100:250, 250:500, or 100:500) was presented in the absence, presence, and after exposure to a bass predator (Micropterus salmoides). Which patch of vegetation bluegills chose to forage in, and foraging rate within each patch were recorded. Independent measurements of bluegill foraging rate and risk of mortality in the three stem densities provided the data for predicting patch choice by the two models. With no predator, preference between plots was consistent with the maximize energy intake per unit time rule of conventional optimality models. However, with a predator present, patch preference switched to match a minimize u/f criterion. Finally, when tested shortly after exposure to a predator (i.e. 15 min), bluegill preference appeared to be in a transitional phase between these two rules. Results are discussed with respect to factors determining the distribution of organisms within beds of aquatic vegetation.  相似文献   

5.
6.
Optimal foraging theory assumes that predators use different prey types to maximize their rate of energetic gain. Studies focusing on prey preference are important sources of information to understand the foraging dynamics of Chrysomya albiceps. The purpose of this investigation is to determine the influence of larval starvation in C. albiceps on the predation rate of different prey blowfly species and instars under laboratory conditions. Our results suggest that C. albiceps prefers Cochliomyia macellaria larvae to Chrysomya megacephala under non-starvation and starvation conditions. Nevertheless, predators gained more weight consuming C. macellaria. This result suggests that C. albiceps profit more in consuming C. macellaria rather than C. megacephala. The foraging behaviour displayed by C. abiceps on their prey and the consequences for the blowfly community are also discussed.  相似文献   

7.
Predation is a strong selective force with both direct and indirect effects on an animal’s fitness. In order to increase the chances of survival, animals have developed different antipredator strategies. However, these strategies have associated costs, so animals should assess their actual risk of predation and shape their antipredator effort accordingly. Under a stressful situation, such as the presence of predators, animals display a physiological stress response that might be proportional to the risk perceived. We tested this hypothesis in wild European rabbits (Oryctolagus cuniculus), subjected to different predator pressures, in Doñana National Park (Spain). We measured the concentrations of fecal corticosterone metabolites (FCM) in 20 rabbit populations. By means of track censuses we obtained indexes of mammalian predator presence for each rabbit population. Other factors that could modify the physiological stress response, such as breeding status, food availability and rabbit density, were also considered. Model selection based on information theory showed that predator pressure was the main factor triggering the glucocorticoid release and that the physiological stress response was positively correlated with the indexes of the presence of mammalian carnivore predators. Other factors, such as food availability and density of rabbits, were considerably less important. We conclude that rabbits are able to assess their actual risk of predation and show a threat-sensitive physiological response.  相似文献   

8.
Summary The migratory and foraging behavior of individually marked bighorn ewes (Ovis canadensis) was studied to test the hypothesis that forage quality determined seasonal range selection. Forage quality was monitored through analysis of fecal crude protein. Ewes in the study population utilized two distinct ranges differing in elevation and possibly predation risk. Pregnant ewes migrated in May from the low-elevation winter range to lambing areas at higher elevation, before plant growth had started there. In so doing, they moved from a range of high-quality forage to one of low-quality forage, apparently to avoid predation on newborn lambs. Non-pregnant adult ewes migrated later. Most yearling ewes (which are not pregnant) migrated with the adult ewes to the lambing areas, but returned to the winter range within a few days, then migrated again to high-elevation areas in June. Forage quality was higher at high elevation from mid-June at least through July, but forage availability appeared to be lower than in the winter range. Seasonal range selection is likely determined by a combination of nutritional and antipredator constraints. The antipredator strategy of bighorn ewes does not always allow them to utilize the range with the best forage.  相似文献   

9.
Abstract.  1. Interactions among predators may influence the total efficiency of a predator complex. The effect of intra- and interspecific interactions of the generalist predators Orthotylus marginalis (Heteroptera: Miridae) and Anthocoris nemorum (Heteroptera: Anthocoridae) was investigated in a laboratory experiment. Outcomes of the interactions were determined by comparing predation rates on eggs and larvae of the blue willow beetle Phratora vulgatissima of single individuals with those of two individuals of the same or different species.
2. A non-additive, antagonistic effect on predation rates due to intraspecific interactions was found between individuals of A. nemorum . No such effect was found in O. marginalis . These results are as expected as a consequence of differences in behaviour of the two predator species: A. nemorum is a much more active and mobile predator than O. marginalis .
3. Contrary to expectation, interspecific interactions between A. nemorum and O. marginalis did not affect the total predation rate.
4. An observation from the field corroborated the results obtained in the laboratory study; there was no negative relationship between the densities of the two predator species, indicating that the two species do not interact negatively in the field at their natural densities.
5. It is concluded that the additive effect of multiple predator species is of potential value in biological control.  相似文献   

10.
Most studies of foraging in shell-less gastropods have focused on the ubiquitous generalist sea hares (family Aplysiidae; subfamily Aplysiinae: Aplysia spp., Dolabella spp). Here we studied movement in a specialist sea hare (the seacat, Dolabrifera dolabrifera; subfamily Dolabriferinae). Seacats in each of 7 different tidepools on Isla Naos in the Gulf of Panama emerged precisely when the daytime ebbing tide fell below the height of their pool, returning to their hiding places within 1-3 hours. This short, precise foraging pattern contrasts sharply with long, variable schedule of the generalist sea-hares. Combined with their reduced chemical and behavioral defenses, these observations on seacats raise the possibility that they are avoiding predators during high tides and at night.  相似文献   

11.
Group foraging can be beneficial for ungulates by decreasing the time required for vigilance, but it can also prove costly because of competition. To determine responses to gregarious behaviour, we studied foraging activity and vigilance of impala ( Aepyceros melampus ) near Kruger National Park, South Africa. We measured time spent foraging, vigilant, moving, grooming, engaging in social interactions and determined herd size and group distribution (i.e. density). We calculated accepted food abundance (AFA), food ingestion rate, steps per minute and percent vigilance for female, bachelor male and herd male impala. There was no relationship between herd size and vigilance, but vigilance decreased with increasing density ( t 1,311 = 4.91, P  <0.0001). Additionally, AFA decreased ( t 1,61 = 5.96, P  <0.0001) and steps per minute increased ( t 1,311 = 14.38, P  <   0.0001) as more individuals fed in close proximity to each other. Impala could be altering their behaviour to accommodate a perceived change in resources because of intraspecific competition and these adjustments might be related more to the distribution of herd members than to herd size. Further studies should examine the behaviour of gregarious animals in relation to the distribution of herd members in addition to group size.  相似文献   

12.
Abstract. Cues released by predators and injured prey often induce shifts in prey behavior that allow prey to evade predators, but also affect prey resource use. I investigated the effects of chemical and mechanical signals produced by injured snails (Physella gyrina) and predatory crayfish (Procambarus clarkii) on microdistributions of P. gyrina. In an initial experiment, I observed snail responses to the presence of a caged crayfish predator, to injured conspecifics, or to both. There were significant effects of time and the treatment × time interaction on the proportion of snails moving above the water line, with greater proportions of snails above the water line at night than during the day and with weak snail crawl‐out behavior being elicited by caged crayfish at night, but not during the day. In a second experiment, I examined snail microdistributions when exposed to crayfish confined to a small cage within each aquarium, crayfish confined to half of each aquarium, and crayfish ranging freely throughout each aquarium. Snails responded most strongly to free‐ranging crayfish by moving above the water line, but also demonstrated significant, but reduced, crawl‐out responses to crayfish confined to half of each aquarium; however, snails did not respond behaviorally to crayfish confined to small cages. In both experiments, there were marginally significant effects of unfed caged crayfish on the proportions of snail populations hiding under benthic shelters, with this response being the strongest at the start of the experiments but weak overall (with only 4–5% of P. gyrina responding in each experiment). These results indicate that cues (e.g., chemical or mechanical) produced by predators altered prey microdistributions, but that the exact prey responses (e.g., moving above the water line or into horizontal or benthic refugia) depended on the intensity and nature of cues.  相似文献   

13.
14.
15.
Interactions between natural enemies can be crucial for determining their overall control of pest species, yet the mechanisms that govern such interactions are often poorly understood. The risk of negative effects such as intraguild predation and the possibility of mitigating such risks are important components for ultimately determining the compatibility of biological control agents. We performed a group of experiments to determine whether the coccinellid Harmonia axyridis Pallas (Coleoptera: Coccinellidae) poses an intraguild threat to the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae) and to see whether A. ervi is able to avoid predation by responding to the chemical tracks deposited by H. axyridis. We show that although H. axyridis does not readily consume A. ervi mummies, it preferentially consumes parasitized aphids over unparasitized aphids. We also show that A. ervi can defend against this threat by avoiding oviposition in the presence of H. axyridis chemical tracks. Aphidius ervi parasitized far fewer pea aphids Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) on plants [Vicia faba L. (Fabaceae)] with H. axyridis chemical tracks in a no‐choice environment at a single‐plant scale. Similarly, when parasitoids could move freely between plants with and without tracks, A. ervi parasitism was higher on plants without tracks. Behavioral observations of A. ervi foraging suggested that this might be because of reduced A. ervi attack rates and patch residence times in the presence of H. axyridis tracks. Despite a risk of intraguild predation by H. axyridis, our study suggests that A. ervi may be able to mitigate this risk by altering its behavior in response to chemical cues.  相似文献   

16.
The ontogeny of swimming speed, schooling behaviour and jellyfish avoidance was studied in hatchery-reared Japanese anchovy Engraulis japonicus to compare its life-history strategy with two other common pelagic fishes, jack mackerel Trachurus japonicus and chub mackerel Scomber japonicus. Cruise swimming speed of E. japonicus increased allometrically from 1·4 to 3·9 standard length (L(S) ) per s (L(S) s(-1) ) from early larval to metamorphosing stage. Burst swimming speed also increased from 6·1 to 28 L(S) s(-1) in these stages. Cruise speed was inferior to that of S. japonicus, as was burst speed to that of T. japonicus. Engraulis japonicus larvae were highly vulnerable to predation by moon jellyfish Aurelia aurita and were readily eaten until they reached 23 mm L(S) , but not at 26 mm L(S) . Schooling behaviour (indicated by parallel swimming) started at c. 17 mm L(S) . Average distance to the nearest neighbour was shorter than values reported in other pelagic fishes. The relatively low predator avoidance capability of E. japonicus may be compensated for by their transparent and thus less conspicuous body, in addition to their early maturation and high fecundity.  相似文献   

17.
Foraging strategy of cattle in patchy grassland   总被引:2,自引:0,他引:2  
We tested several strategies of foraging that grazing herbivores may adopt in a patchy habitat in relation to energy intake. The patch selection of cattle was investigated in an Agrostis/Festuca grassland and in a Lolium grassland in 13 observation periods over 2 years. Both grasslands were stocked with five yearling steers. Bite counts were made on patches of different vegetation structure: short, tall and mature stemmy grass. Bite size of each patch category was determined by hand-plucking. Samples of patch types were analysed for organic matter digestibility, as a measure of energy content. There was a large seasonal variation in relative patch cover and in forage characteristics. However, the differences between patches in bite size, bite rate and digestibility were consistent over time. In short patches digestibility was high, bite size was low and bite rate was high compared to stemmy patches. In tall patches digestibility was only little lower than in short patches and bite size and bite rate were intermediate between short and stemmy patches. The steers selected the short and tall patches over the stemmy patches, despite a relatively low intake rate of digestible organic matter in the short patches. Four hypotheses on foraging strategy were examined to explain the allocation of time or bites between patches: random allocation according to bites, random allocation according to grazing time, matching of time in proportion to digestibility, and matching of time in proportion to intake rate of digestible organic matter. The observed distribution of bites and time between patches was significantly different from the predictions of the various hypotheses. Patch choice was better explained by a random allocation of grazing time than by a random allocation of bites. Matching for digestible organic matter intake rate yielded the worst predictions of patch selection. Matching for digestibility gave the best explanation of patch selection, but the improvement compared to a random allocation of grazing time was not significant. The significance of the contribution of digestibility to selection may have been confounded by the effect of increased selectivity within tall patches. Observed patch selection was considered in relation to the maximization of energy intake rate. The selectivity of cattle was not pronounced, but it was consistent with a principle of maximization of energy intake on a daily basis instead of a short-term basis. Selectivity appeared to be constrained by costs of searching for and discriminating between different forage resources. It is concluded that a flexible selection for short patches over tall patches and avoidance of stemmy patches provides a good approximation of energy intake maximization in a complex and changing environment.  相似文献   

18.
Abstract

We attempt to evaluate the biosecurity risk posed by the newly established exotic ant species Monomorium sydneyense Forel, in New Zealand. Aggression was observed between workers from different M. sydneyense nests, indicating that unicoloniality is unlikely. Nests had multiple queens, and nest foundation is apparently via winged queens. The foraging behaviour corresponded to multicoloniality, with workers foraging in close proximity to the nest. In trials during December (2003) and March (2004), workers had a >50% probability of finding food at a distance of 0.8–1 m from their nest, but on cooler study dates (October 2004) our logistic regression model indicated that they would not reach this threshold irrespective of how close the food was to the nest. Although M. sydneyense forage during both night and day, they appeared to be relatively inefficient at locating food. We conclude that under the conditions assessed here, the environmental damage likely to be caused by M. sydneyense is modest compared with other invasive ant species.  相似文献   

19.
Many species of bird recognize acoustic and visual cues given by their predators and have complex defence adaptations to reduce predation risk. Recognition of threats posed by specific predators and specialized anti‐predation behaviours are common. In this study we investigated predator recognition and anti‐predation behaviours in a pelagic seabird, Leach's Storm‐petrel Oceanodroma leucorhoa, at a site where predation risk from Great Skuas Stercorarius skua is exceptionally high. Leach's Storm‐petrels breed in burrows and come on land only at night. Counter‐predator adaptations were investigated correlatively in relation to changing natural light levels at night, and experimentally in relation to nocturnal visual and acoustic signals from Great Skuas. Colony attendance by Leach's Storm‐petrels was attuned to changes in light conditions at night and was highest when nights were darkest. This behaviour is likely to reduce predation risk on land; however, specific recognition of Great Skuas and specialized defence behaviours were not found. Leach's Storm‐petrels, in particular apparently non‐breeding individuals, were entirely naïve to the threat posed by Great Skuas and were captured easily in a variety of different ways, on the ground and in the air. Lack of specialized behavioural adaptations in Leach's Storm‐petrels against Great Skuas may be because spatial overlap of breeding distributions of these species appears to be a rare and recent phenomenon.  相似文献   

20.
The responses of the burrowing bivalves Macoma balthica and Cerastoderma edule to chemical cues emitted by feeding shore crabs Carcinus maenas were investigated. M. balthica held in the laboratory and exposed to chemical signals in effluent water discharging from tanks containing C. maenas fed 20 M. balthica day− 1 reacted by increasing their burial depths from approximately 30 mm to depths of > 60 mm, over a period of several days. When the signal was removed the bivalves gradually returned to their original depth over 5 days. C. edule similarly exposed to effluent from crabs feeding on conspecifics showed no response. In an attempt to identify the signal inducing this burrowing response, M. balthica were exposed to a variety of chemical signals. Crabs fed M. balthica elicited the strongest response, followed by crabs fed C. edule. There were also small responses to effluent from crabs fed on fish, crabs previously fed on M. balthica and to crab faeces, but no responses to starved crabs, crushed M. balthica, or controls. We conclude that increased burrowing depth of M. balthica is induced by some as yet unidentified chemical cue produced by feeding crabs and is strongest when the crabs were fed on M. balthica. Unexpectedly, neither the presence of crabs themselves, nor of damaged conspecifics, was effective in eliciting a burrowing response. The mortality rates of M. balthica and C. edule selected by crabs when burrowed at normal depths and after exposure to effluent from feeding crabs were different. Crabs selected 1.5 times more C. edule than M. balthica when both species were burrowed at their normal depths, but 15 times more after the tanks had been exposed to effluent from feeding crabs for 5 days. The burrowing response of M. balthica thus appears to reduce mortality significantly by displacing predation pressure on to the more accessible C. edule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号