首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several 8-(6-aminohexyl)-amino adenine nucleotide derivatives, including ATP, 2′,5′-ADP, 3′,5′-ADP and desulfo-CoA (CoA, reduced coenzyme A), were prepared and immobilized on Sepharose by cyanogen bromide activation. 8-(6-Aminohexyl)-amino-ATP-Sepharose was found to exhibit good affinity for both NAD+-dependent dehydrogenases and kinases. Sequential biospecific elutions with NADH and ATP resulted in a good separation of dehydrogenases from kinases. As many as eight different dehydrogenases and kinases could be substantially purified from both porcine muscle and mouse kidney extracts by this new procedure. 8-(6-Aminohexyl)-amino-2′,5′-ADP- and −3′,5′-ADP-Sepharose were shown to exhibit good affinity for many NADP+-dependent dehydrogenases from yeast extracts and CoA-dependent enzymes, respectively. Purification of citrate synthases from pig heart and Eschericia coli extracts by means of these 8-substituted adenine nucleotide affinity columns was also presented.  相似文献   

2.
Cell free extracts of Galactomyces reessii contain a hydratase as the key enzyme for the transformation of 3-methylcrotonic acid to 3-hydroxy-3-methylbutyric acid. Highest levels of hydratase activity were obtained during growth on isovaleric acid. The enzyme, an enoyl CoA hydratase, was purified 147-fold by precipitation with ammonium sulphate and successive chromatography over columns of DE-52, Blue Sepharose CL-6B and Sephacryl S-200. During purification, hydratase activity was measured spectrophotometrically (OD change at 263 nm) for 3-methylcrotonyl CoA and crotonyl CoA as substrates. The enzyme displayed highest activity with crotonyl CoA with a K cat of 1,050,000 min−1. The ratio of crotonyl CoA to 3-methylcrotonyl CoA activities was constant (20:1) during all steps of purification. The K cat for crotonyl CoA was also about 20 times greater than the K cat for 3-methylcrotonyl CoA (51,700 min−1). The enzyme had pH and temperature optima at 7.0 and 35°C, a native M r of 260±4.5 kDa and a subunit M r of 65 kDa, suggesting that the enzyme was a homotetramer. The pI of the purified hydratase was 5.5, and the N-terminal amino acid sequence was VPEGYAEDLLKGKMMRFFDS. Hydratase activity for 3-methylcrotonyl CoA was competitively inhibited by acetyl CoA, propionyl CoA and acetoacetyl CoA. Journal of Industrial Microbiology & Biotechnology (2002) 28, 81–87 DOI: 10.1038/sj/jim/7000215 Received 27 June 2001/ Accepted in revised form 17 September 2001  相似文献   

3.
All enzymes required for the biosynthesis of CoA from pantothenic acid are present in the particle-free supernatant fraction from rat liver. We now report that also mitochondria have the capacity for biosynthesis of CoA, with 4′-phosphopantetheine as the initial precursor. Rat liver mitochondria do not contain pantothenate kinase, 4′-phosphopantothenoyl-1-synthetase or 4′-phosphopantothenoyl-1-cysteine decarboxylase. Dephospho-CoA pyrophosphorylase and dephospho-CoA kinase are present in the inner mitochondrial membrane, however, at specific activities as high as in cytosol. Km of mitochondrial dephospho-CoA kinase for dephospho-CoA is about 0.01 mmol/1, which is one order of magnitude lower than reported for the kinase from cytosol.  相似文献   

4.
The serine proteinase α-thrombin potently stimulates reinitiation of DNA synthesis in quiescent Chinese hamster fibroblasts (CCL39 line). 125I-labeled α-thrombin binds rapidly and specifically to CCL39 cells with high affinity (Kd ≈ 4 nM). Binding at 37°C was found to remain stable for 6 h or more during which time no receptor down-regulation, ligand internalization and/or degradation could be detected. The structure of α-thrombin receptors on CCL39 cells was identified by covalently coupling 125I-α-thrombin to intact cells using a homobifunctional cross-linking agent, ethylene glycol bis(succinimidyl succinate). By resolution in sodium dodecyl sulfate polyacrylamide gel electrophoresis we observed the specific labeling of a major α-thrombin-binding site of Mr ≈ 150 000 revealed as a 125I-α-thrombin cross-linked complex of Mr ≈ 180 000. Independent of chemical cross-linking, 125I-α-thrombin also formed a covalent complex with a minor, 35 000 Mr, membrane component identified as protease nexin. Two derivatives of α-thrombin modified at the active site are 1000-fold less than α-thrombin for mitogenicity. These two non-mitogenic derivatives bound to cells with similar affinity and maximal binding capacity as native α-thrombin, and affinity-labeled the receptor subunit of Mr 150 000. When present in large excess, during incubation of cells with α-thrombin, these binding antagonists were ineffective in blocking α-thrombin-induced DNA synthesis. These data suggest that the specific 150 000 Mr binding sites that display high affinity for α-thrombin do not mediate induction of the cellular mitogenic response.  相似文献   

5.
The purpose of this study was to develop and validate an ultra performance liquid chromatography–mass spectrometry (UPLC/MS) method to investigate the hepatic oxidative metabolism of 2,2′,4,4′,5-pentabromodiphenyl ether (BDE-99), a widely used flame retardant and ubiquitous environmental contaminant. Hydroxylated metabolites were extracted using liquid-to-liquid extraction, resolved on a C18 column with gradient elution and detected by mass spectrometry in single ion recording mode using electrospray negative ionization. The assay was validated for linearity, accuracy, precision, limit of quantification, range and recovery. Calibration curves were linear (R2 ≥ 0.98) over a concentration range of 0.010–1.0 μM for 4-OH-2,2′,3,4′,5-pentabromodiphenyl ether (4-OH-BDE-90), 5′-OH-2,2′,4,4′,5-pentabromodiphenyl ether (5′-OH-BDE-99) and 6′-OH-2,2′,4,4′,5-pentabromodiphenyl ether (6′-OH-BDE-99), and a concentration range of 0.0625–12.5 μM for 2,4,5-tribromophenol (2,4,5-TBP). Inter- and intra-day accuracy values ranged from −2.0% to 6.0% and from −7.7% to 7.3%, respectively, and inter- and intra-day precision values ranged from 2.0% to 8.5% and from 2.2% to 8.6% (n = 6), respectively. The limits of quantification were 0.010 μM for 4-OH-BDE-90, 5′-OH-BDE-99 and 6′-OH-BDE-99, and 0.0625 μM for 2,4,5-TBP. Recovery values ranged between 85 and 100% for the four analytes. The validated analytical method was applied to identify and quantify hydroxy BDE-99 metabolites formed in vitro. Incubation of BDE-99 with rat liver microsomes yielded 4-OH-BDE-90 and 6′-OH-BDE-99 as major metabolites and 5′-OH-BDE-99 and 2,4,5-TBP as minor metabolites. To our knowledge, this is the first validated UPLC/MS method to quantify hydroxylated metabolites of PBDEs without the need of derivatization.  相似文献   

6.
The initial reactions possibly involved in the acrobic and anaerobic metabolism of aromatic acids by a denitrifying Pseudomonas strain were studied. Several acyl CoA synthetases were found supporting the view that activation of several aromatic acids preceeds degradation. A benzoyl CoA synthetase activity (AMP forming) (apparent K m values of the enzyme from nitrate grown cells: 0.01 mM benzoate, 0.2 mM ATP, 0.2 mM coenzyme A) was present in aerobically grown and anaerobically, nitrate grown cells when benzoate or other aromatic acids were present. In addition to benzoate and fluorobenzoates, also 2-amino-benzoate was activated, albeit with unfavorable K m (0.5 mM 2-aminobenzoate). A 2-aminobenzoyl CoA synthetase (AMP forming) was induced both aerobically and anaerobically with 2-aminobenzoate as growth substrate which had a similar substrate spectrum but a low K m for 2-aminobenzoate (<0.02 mM). Anaerobic growth on 4-hydroxybenzoate induced a 4-hydroxybenzoyl CoA synthetase, and cyclohexanecarboxylate induced another synthetase. In contrast, 3-hydroxybenzoate and phenyl-acetate grown anaerobic cells appeared not to activate the respective substrates at sufficient rates. Contrary to an earlier report extracts from aerobic and anaerobic 2-aminobenzoate grown cells catalysed a 2-aminobenzoyl CoA-dependent NADH oxidation. This activity was 10–20 times higher in aerobic cells and appeared to be induced by 2-aminobenzoate and oxygen. In vitro, 2-aminobenzoyl CoA reduction was dependent on 2-aminobenzoyl CoA NAD(P)H, and oxygen. A novel mechanism of aerobic 2-aminobenzoate degradation is suggested, which proceeds via 2-aminobenzoyl CoA.  相似文献   

7.
Summary The benzoyl-CoA ligase from an anaerobic syntrophic culture was purified to homogeneity. It had a molecular mass of around 420 kDa and consisted of seven or eight subunits of 58 kDa. The temperature optimum was 37–40° C, the optimum pH around 8.0 and optimal activity required 50–100 mM TRIS-HCI buffer, pH 8.0 and 3–7 mM MgCl2; MgCl2 in excess of 10 mM was inhibitory. The activation energy for benzoate was 11.3 kcal/mol. Although growth occured only with benzoate as a carbon source, the benzoyl-coenzyme A (CoA) ligase formed benzoyl-CoA esters with benzoate, 2-, 3- and 4-fluorobenzoate, picolinate, nicotinate and isonicotinate. Acetate was activated to acetyl-CoA by an acetyl-CoA synthetase. The K m values for benzoate, 2-, 3- and 4-fluorobenzoate were 0.04, 0.28, 1.48 and 0.32 mM, the V max values 1.05, 1.0, 0.7 and 0.98 units (U)/mg, respectively. For reduced CoA (CoA-SH) a K m of 0.17 mM and a V max of 1.05 U/mg and for ATP a K m of 0.16 mM and a V max of 1.08 U/mg was determined. Benzoate activation was inhibited by more than 6 mM ATP, presumably by pyrophosphate generation from ATP. The inhibition constant (K i) for pyrophosphate was 5.7 mM. No homology of the N-terminal amino acid sequence with that of a 2-aminobenzoyl-CoA ligase of a denitrifying Pseudomonas sp. was found. Correspondence to: J. Winter  相似文献   

8.
The glutelin fraction was extracted from grain meals of rice (Oryzea sativa) with 50 mM Tris-HCl buffer (pH 8.8) containing 6 M urea and 10 mM 2-mercaptoethanol. Polypeptides of glutelin were separated and purified by ion-exchange chromatography under denaturing conditions. Analysis by two-dimensional gel electrophoresis showed that 2 major polypeptides of the rice glutelin fraction, Mr 36 000 and 22 000, were linked in disulphide bonded pairs containing one Mr 36 000 and one Mr 22 000 subunit. A partial amino acid sequence of the purified Mr 22 000 glutelin subunit showed it to be homologous to the β-subunit of pea legumin, a storage protein which also contains disulphide-linked subunit pairs (Mr 38 000 and Mr 22 000). It is therefore proposed that the major component of rice glutelin is a legumin-like protein.  相似文献   

9.
2′,3′-O-(2,4,6-Trinitrophenyl) adenosine 5′-triphosphate (TNP-ATP) is a fluorescent analogue of ATP. MgTNP-ATP was found to be an allosteric activator of pyruvate carboxylase that exhibits competition with acetyl CoA in activating the enzyme. There is no evidence that MgTNP-ATP binds to the MgATP substrate binding site of the enzyme. At concentrations above saturating, MgATP activates bicarbonate-dependent ATP cleavage, but inhibits the overall reaction. The fluorescence of MgTNP-ATP increases by about 2.5-fold upon binding to the enzyme and decreases on addition of saturating acetyl CoA. However, not all the MgTNP-ATP is displaced by acetyl CoA, or with a combination of saturating concentrations of MgATP and acetyl CoA. The kinetics of the binding of MgTNP-ATP to pyruvate carboxylase have been measured and shown to be triphasic, with the two fastest phases having pseudo first-order rate constants that are dependent on the concentration of MgTNP-ATP. The kinetics of displacement from the enzyme by acetyl CoA have been measured and also shown to be triphasic. A model of the binding process is proposed that links the kinetics of MgTNP-ATP binding to the allosteric activation of the enzyme.  相似文献   

10.
Eleven regions of mouse brain and twelve layers of monkey retina were assayed for choline acetyl transferase (ChAT), acetylcholine esterase (AChE), and 4 enzymes that synthesize acetyl CoA. The purpose was to seek evidence concerning the source of acetyl CoA for acetylcholine generation. In brain ATP citrate lyase was strongly correlated with ChAT as well as AChE (r=0.914 in both cases). Weak, but statistically significant correlation, was observed between ChAT and both cytoplasmic and mitochondrial thiolase, whereas there was a significant negative correlation between ChAT and acetyl thiokinase. In retina ChAT was essentially limited to the inner plexiform and ganglion cell layers, whereas substantial AChE activity extended as well into inner nuclear, outer plexiform and fiber layers, but no further. ATP citrate lyase activity was also highest in the inner four retinal layers, but was not strongly correlated with either ChAT or AChE (r=0.724 and 0.761, respectively). Correlation between ChAT and acetyl thiokinase was at least as strong (r=0.757), and in the six inner layers of retina, the correlation between ChAT and acetylthiokinase was very strong (r=0.932).Special issue dedicated to Dr. Lawrence Austin  相似文献   

11.
The mRNP-associated protein kinase is purified to near homogeneity by ion-exchange chromatography on phosphocellulose and affinity chromatography on casein-Sepharose 4B and ATP-agarose. The cyclic nucleotide-independent enzyme phosphorylates casein using either ATP or GTP. The enzyme exists in two forms composed of subunits with Mr 36 500 (α) and 28 000 (β) and of subunits with Mr 36 500 (α), 33 000 (α′) and 28 000 (β). The undegraded enzyme has an Mr of 136 000 ± 7000. The enzyme is inhibited by heparin and hemin and stimulated by spermine. The mRNP-associated protein kinase may be classified as a casein kinase II. Main mRNP protein phosphate acceptors have Mr values of 112 000, 72 000, 65 000, 53 000, 38 000, 28 000, 23 500 and 21 000. Phosphorylation of the Mr 38 000 poly(A)-binding protein resulted in the generation of different acidic ionic species. From the observed inhibition of the translational activity after phosphorylation by the mRNP-associated protein kinase a function in the repression of mRNP is proposed.  相似文献   

12.
Microsomes prepared from equine submandibular glands and incubated with tritium-labelled AcCoA incorporated acid-insoluble radioactivity in a manner dependent on time, protein, membrane integrity and AcCoA concentration, with incorporation being optimal at 37°C and pH 6.6. Under the experimental conditions used a K M of 32.1 M for AcCoA and a Vmax of 1.2 pmol/mg protein x min was obtained. The incorporation of acid-insoluble radioactivity was also inhibited by CoA in a competitive manner (K i=240 M), as well as by para-chloromercuribenzoate, 3-dephospho-CoA, 5-IDP, 5-ADP, ß-NAD and 4,4-diisothiocyanatostilbene-2,2-disulfonate. We demonstrate here that this incorporation of radioactivity into endogenous sialic acid is due to the action of an AcCoA:sialate-4-O-acetyltransferase [EC 2.3.1.44]. Radio thin-layer chromatography analyses of propionic acid-released sialic acids showed that the incorporation of radioactivity correlated with the formation of a radiolabelled species that co-migrated with authentic Neu4,5Ac2. Saponification experiments using NaOH, mouse hepatitis virus strain S and Influenza C/JJ/50 virus also showed that the transfer of [3H]acetyl groups from [3H]AcCoA to endogenous sialic acid acceptors was occurring exclusively at carbon 4 of the pyranose ring.  相似文献   

13.
Coenzyme A synthase (CoAsy) is a bifunctional enzyme which facilitates the last two steps of Coenzyme A biogenesis in higher eukaryotes. Here we describe that CoAsy forms a complex with enhancer of mRNA-decapping protein 4 (EDC4), a central scaffold component of processing bodies. CoAsy/EDC4 complex formation is regulated by growth factors and is affected by cellular stresses. EDC4 strongly inhibits the dephospho-CoA kinase activity of CoAsy in vitro. Transient overexpression of EDC4 decreases cell proliferation, and further co-expression of CoAsy diminishes this effect. Here we report that EDC4 might contribute to regulation of CoA biosynthesis in addition to its scaffold function in processing bodies.

Structured summary of protein interactions

CoAsyphysically interacts with EDC4 by anti bait coimmunoprecipitation (View Interaction: 1, 2, 3)  相似文献   

14.
A new radioiodinated (2.2 Ci/μmol) iodocyanopindolol derivative carrying a 4-(3-trifluoromethyldiazirino)benzoyl residue has been synthesized. The long-wavelength absorption of the diazirine permits formation of the carbene by photolysis under very mild conditions. [125I]ICYP-diazirine binds with high affinity (Kd = 60 pM) to β-receptors from turkey erythrocyte membranes. Upon irradiation, [125I]ICYP-diazirine is covalently incorporated in a Mr 40 000 protein. Stereoselective inhibition of photolabeling by the (?)enantiomers of alprenolol and isoproterenol indicated that the Mr 40 000 protein contains a β-adrenergic binding site. The yield of specific labeling was up to 8.2% of total β-receptor binding sites. The Mr 40 000 protein photolabeled in the membrane could be solubilized at comparable yield with either digitonin or Triton X-100. Irradiation of digitonin-solubilized turkey erythrocyte membranes with [125I]ICYP-diazirine resulted in specific labeling of two proteins with Mr 40 000 and 50 000. In guinea-pig lung membranes, at least five proteins were photolabeled, of which one (with approximate Mr 67 000) was labeled specifically.  相似文献   

15.
A novel biflavonoid, that we have named linobiflavonoid, and the known biscoumarin ether, daphnoretin, were isolated from the root extracts of Linostoma pauciflorum Griff. The structure of linobiflavonoid was determined from interpretation of its NMR spectroscopic data and from a comparison of this data with those of known biflavonoids and biflavones. The known flavones, 5,4′-dihydroxy-7,3′,5′-trimethoxyflavone and 5,4′-dihydroxy-7-methoxyflavone along with stigmasterol were isolated from the vines of the same plant. 4′-Dihydroxy-7,3′,5′-trimethoxyflavone was active against Mycobacterium tuberculosis (MIC 3.13 μM) and KB-oral cavity cancer (IC50 17.41 μM).  相似文献   

16.
Gerhard Sandmann 《Phytochemistry》2008,69(17):2886-2890
The Neurospora crassa mutant YLO exhibits a yellow phenotype instead of the red-orange pigmentation of the wild type. Recently, it was shown that the mutant YLO is defective in a specific aldehyde dehydrogenase which catalyses the last step of carotenogenesis to the formation of neurosporaxanthin [Estrada, A.F., Youssar, L., Scherzinger, D., Al-Babili, S., Avalos, J., 2008. The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol. Microbiol. 69, 1207-1220]. Since different carotenoid compositions between wild type and YLO have been reported in earlier publications, the carotenoids of YLO were analyzed and unknown carotenoids identified. Fractionation of carotenoid extracts from YLO revealed in the less polar fraction two major carotenoids of low polarity which were found only in trace amounts in the wild type. Both carotenoids could be hydrolyzed with KOH to more polar products indicating the presence of fatty acid esters. The fatty acid moiety was identified as myristic acid by gas chromatography. Optical and mass spectra as well as co-chromatography with a synthesized authentic standard identified the free alcohols as 4′-apolycopene-4′-ol and 4′-apo-γ-carotene-4′-ol which assigns the dominating carotenoids in the YLO mutant as 4′-apolycopene-4′-myristate and 4′-apo-γ-carotene-4′-myristate. We can attribute the accumulation of these two carotenoids in YLO to the substantial mutation of the neurosporaxanthin-forming aldehyde dehydrogenase. However, the aldehyde intermediates 4′-apo-γ-carotene-4′-al and 4′-apo-lycopene-4′-al do not accumulate substantially but are reduced instead to the corresponding alcohols, 4′-apolycopene-4′-ol and 4′-apo-γ-carotene-4′-ol, and both further esterified with mainly myristic acid yielding 4′-apolycopene-4′-myristate and 4′-apo-γ-carotene-4′-myristate.  相似文献   

17.
Two new lead(II) complexes with the ligand 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine (pyterpy), [Pb(pyterpy)(MeOH)I2] · MeOH and [Pb(pyterpy)(μ-AcO)]2(ClO4)2, have been synthesized and characterized by CHN elemental analysis, 1H NMR-, 13C NMR-, IR spectroscopy and structurally analyzed by X-ray single-crystal diffraction. The thermal stabilities of these compounds were studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The single crystal X-ray analyses show that the coordination number in these complexes is six with three “pyterpy” N-donor atoms and two or three of the anionic ligands. The arrangement of donor atoms in these complexes suggest a gap or hole in the coordination geometry of the lead atoms, possibly occupied by a stereoactive lone pair of electrons on lead(II) and the coordination sphere is hemidirected. The potentially tetradentate ligand 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine (pyterpy) acts as a tridentate donor to Pb(II). The noncoordinated pyridyl group interacts with hydrogen atoms of adjacent molecules and forms normal hydrogen bonds in [Pb(pyterpy)(MeOH)I2] · MeOH and weak C-H?N interactions for [Pb(pyterpy)(μ-AcO)]2(ClO4)2, thus extending the monomeric structures into one-dimensional networks.  相似文献   

18.
Adenosine 5-phosphosulfate sulfotransferase (APSSTase) was purified over 2700-fold to homogeneity from the thalli of the marine macroalgaPorphyra yezoensis Ueda (Rhodophyta), using a combination of ammonium sulfate precipitation, hydrophobic chromatography, anion-exchange chromatography and gel-filtration. The native Mr measured by gel-filtration was 350 000. The subunit Mr was estimated to be 43 000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. In addition, APSSTase had a relatively broad pH optimum of pH 9.0–9.8 with a peak at pH 9.5. The apparentK m value for adenosine 5-phosphosulfate (APS) was 2.1 M, when dithiothreitol was acceptor substrate. 3-Phosphoadenosine 5-phosphosulfate and inosine 5-phosphosulfate could not substitute for APS as a sulfate donor. The enzyme utilized several organic thiols as acceptor substrates (artificial substrates): dithiothreitol (apparentK m = 1.5 mM) and dithioerythritol (apparentK m = 1.5 mM) gave the highest activity, and appreciable activity was also obtained usingl-glutathione (reduced form) which exhibited slight substrate inhibition (apparentK m = 0.6 mM; the initial velocity was maximal at 3.0–4.0 mM). While APSSTase was markedly unstable in vitro: the half-life for activity loss at 25°C and pH 9.5 was about 8 min, the instability was decreased in the presence of a relatively high concentration of Na2SO4 or (NH4)2SO4, and in the presence of APS or its analogs (AMP and -methylene-APS). Most of the thiols, with the sole exception of glutathione, were found to inactivate APSSTase irreversibly. The thiol-mediated inactivation was completely inhibited by the high concentration of Na2SO4, and by the analogs of APS.Abbreviations APS adenosine 5-phosphosulfate - APSSTase adenosine 5-phosphosulfate sulfotransferase - -m-APS -methylene-adenosine 5-phosphosulfate - DTT dithiothreitol - IPS inosine 5-phosphosulfate - PAPS 3-phosphoadenosine 5-phosphosulfate We wish to thank Mr. I. Kashiwase, Mr. Y. Endo and Mr. Y. Mimura, School of Fisheries Sciences, Kitasato University, for their technical assistance in this study. The research described in this paper was partly supported by the Kitasato Research Grant (H5-9 and H6-13 to N.K.).  相似文献   

19.
The 4′-benzenesulfonyl derivative of 3′-deoxythymidine was prepared from 3′-deoxythymidine-5′-aldehyde. The 4′-benzenesulfonyl leaving group undergoes a nucleophilic substitution with organoaluminum and organosilicon reagents to furnish a variety of 4′-substituted (Me, Et, i-Bu, trimethylsilylethynyl, CH2CHCH2, CN, N3) analogues.  相似文献   

20.
 The human Kx blood group antigen is carried by a 37 000 M r apparent molecular mass membrane polypeptide which is deficient in rare individuals with the McLeod syndrome. The X-linked human XK gene is transcribed in many tissues including adult skeletal muscle and brain, sieges of disorders observed in McLeod syndrome. We report here the cloning of the orthologous mouse XK mRNA. Comparison of XK from human and mouse revealed 80% sequence similarity at the amino acid level. The mouse XK gene is organized in two exons and is expressed in many tissues, but its expression pattern is slightly different from that of the human gene. The presence in mouse erythrocyte membrane of a 43 000 M r Kx-related protein was demonstrated by immunoblotting with a rabbit antiserum directed against the human protein. With non-reduced samples, a 140 000 M r species was detected instead of the 43 000 M r protein, suggesting that, as demonstrated in the Kx polypeptide might be complexed with another protein in mouse red cells, presumably the homologue of the human Kell protein of 93 000 M r. Received: 22 February 1999 / Revised: 8 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号