首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SUMMARY Genotype–phenotype interactions during the evolution of form in multicellular organisms is a complex problem but one that can be aided by computational approaches. We present here a framework within which developmental patterns and their underlying genetic networks can be simulated. Gene networks were chosen to reflect realistic regulatory circuits, including positive and negative feedback control, and the exchange of a subset of gene products between cells, or within a syncytium. Some of these networks generate stable spatial patterns of a subset of their molecular constituents, and can be assigned to categories (e.g., "emergent" or "hierarchic") based on the topology of molecular circuitry. These categories roughly correspond to what has been discussed in the literature as "self-organizing" and "programmed" processes of development. The capability of such networks to form patterns of repeating stripes was studied in network ensembles in which parameters of gene-gene interaction were caused to vary in a manner analogous to genetic mutation. The evolution under mutational change of individual representative networks of each category was also simulated. We have found that patterns with few stripes (≤3) are most likely to originate in the form of a hierarchic network, whereas those with greater numbers of stripes (≥4) originate most readily as emergent networks. However, regardless of how many stripes it contains, once a pattern is established, there appears to be an evolutionary tendency for emergent mechanisms to be replaced by hierarchic mechanisms. These results have potential significance for the understanding of genotype-phenotype relationships in the evolution of metazoan form.  相似文献   

2.
Understanding biological functions through molecular networks   总被引:3,自引:0,他引:3  
Han JD 《Cell research》2008,18(2):224-237
The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future.  相似文献   

3.
Alignment of molecular networks by integer quadratic programming   总被引:3,自引:0,他引:3  
MOTIVATION: With more and more data on molecular networks (e.g. protein interaction networks, gene regulatory networks and metabolic networks) available, the discovery of conserved patterns or signaling pathways by comparing various kinds of networks among different species or within a species becomes an increasingly important problem. However, most of the conventional approaches either restrict comparative analysis to special structures, such as pathways, or adopt heuristic algorithms due to computational burden. RESULTS: In this article, to find the conserved substructures, we develop an efficient algorithm for aligning molecular networks based on both molecule similarity and architecture similarity, by using integer quadratic programming (IQP). Such an IQP can be relaxed into the corresponding quadratic programming (QP) which almost always ensures an integer solution, thereby making molecular network alignment tractable without any approximation. The proposed framework is very flexible and can be applied to many kinds of molecular networks including weighted and unweighted, directed and undirected networks with or without loops. AVAILABILITY: Matlab code and data are available from http://zhangroup.aporc.org/bioinfo/MNAligner or http://intelligent.eic.osaka-sandai.ac.jp/chenen/software/MNAligner, or upon request from authors. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

4.
Background: Identifying biomarkers for accurate diagnosis and prognosis of diseases is important for the prevention of disease development. The molecular networks that describe the functional relationships among molecules provide a global view of the complex biological systems. With the molecular networks, the molecular mechanisms underlying diseases can be unveiled, which helps identify biomarkers in a systematic way. Results: In this survey, we report the recent progress on identifying biomarkers based on the topology of molecular networks, and we categorize those biomarkers into three groups, including node biomarkers, edge biomarkers and network biomarkers. These distinct types of biomarkers can be detected under different conditions depending on the data available. Conclusions: The biomarkers identified based on molecular networks can provide more accurate diagnosis and prognosis. The pros and cons of different types of biomarkers as well as future directions to improve the methods for identifying biomarkers are also discussed.  相似文献   

5.
A classical result in phylogenetic trees is that a binary phylogenetic tree adhering to the molecular clock hypothesis exists if and only if the matrix of distances between taxa is ultrametric. The ultrametric condition is very restrictive. In this paper we study phylogenetic networks that can be constructed assuming the molecular clock hypothesis. We characterize distance matrices that admit such networks for 3 and 4 taxa. We also design two algorithms for constructing networks optimizing the least-squares fit.  相似文献   

6.
7.
Residing beneath the phenotypic landscape of a plant are intricate and dynamic networks of genes and proteins. As evolution operates on phenotypes, we expect its forces to shape somehow these underlying molecular networks. In this review, we discuss progress being made to elucidate the nature of these forces and their impact on the composition and structure of molecular networks. We also outline current limitations and open questions facing the broader field of plant network analysis.  相似文献   

8.

Background  

Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors.  相似文献   

9.
Zhang S  Jin G  Zhang XS  Chen L 《Proteomics》2007,7(16):2856-2869
With the increasingly accumulated data from high-throughput technologies, study on biomolecular networks has become one of key focuses in systems biology and bioinformatics. In particular, various types of molecular networks (e.g., protein-protein interaction (PPI) network; gene regulatory network (GRN); metabolic network (MN); gene coexpression network (GCEN)) have been extensively investigated, and those studies demonstrate great potentials to discover basic functions and to reveal essential mechanisms for various biological phenomena, by understanding biological systems not at individual component level but at a system-wide level. Recent studies on networks have created very prolific researches on many aspects of living organisms. In this paper, we aim to review the recent developments on topics related to molecular networks in a comprehensive manner, with the special emphasis on the computational aspect. The contents of the survey cover global topological properties and local structural characteristics, network motifs, network comparison and query, detection of functional modules and network motifs, function prediction from network analysis, inferring molecular networks from biological data as well as representative databases and software tools.  相似文献   

10.
Accurate molecular property prediction, as one of the classical cheminformatics topics, plays a prominent role in the fields of computer-aided drug design. For instance, property prediction models can be used to quickly screen large molecular libraries to find lead compounds. Message-passing neural networks (MPNNs), a sub-class of Graph neural networks (GNNs), have recently been demonstrated to outperform other deep learning methods on a variety of tasks, including the prediction of molecular characteristics. In this survey, we provide a brief review of the MPNN models and their applications on molecular property prediction.  相似文献   

11.
Prolonged high-fat diet leads to the development of obesity and multiple comorbidities including non-alcoholic steatohepatitis (NASH), but the underlying molecular basis is not fully understood. We combine molecular networks and time course gene expression profiles to reveal the dynamic changes in molecular networks underlying diet-induced obesity and NASH. We also identify hub genes associated with the development of NASH. Core diet-induced obesity networks were constructed using Ingenuity pathway analysis (IPA) based on 332 high-fat diet responsive genes identified in liver by time course microarray analysis (8 time points over 24 weeks) of high-fat diet-fed mice compared to normal diet-fed mice. IPA identified five core diet-induced obesity networks with time-dependent gene expression changes in liver. These networks were associated with cell-to-cell signaling and interaction (Network 1), lipid metabolism (Network 2), hepatic system disease (Network 3 and 5), and inflammatory response (Network 4). When we merged these core diet-induced obesity networks, Tlr2, Cd14, and Ccnd1 emerged as hub genes associated with both liver steatosis and inflammation and were altered in a time-dependent manner. Further, protein–protein interaction network analysis revealed Tlr2, Cd14, and Ccnd1 were interrelated through the ErbB/insulin signaling pathway. Dynamic changes occur in molecular networks underlying diet-induced obesity. Tlr2, Cd14, and Ccnd1 appear to be hub genes integrating molecular interactions associated with the development of NASH. Therapeutics targeting hub genes and core diet-induced obesity networks may help ameliorate diet-induced obesity and NASH.  相似文献   

12.
There has been nearly a century of interest in the idea that information is encoded in the brain as specific spatio-temporal patterns of activity in distributed networks and stored as changes in the efficacy of synaptic connections on neurons that are activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation opened a new chapter in the study of synaptic plasticity in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, the key events in the cellular and molecular mechanisms underlying synaptic plasticity are starting to be identified. They require the activation of specific receptors and of several molecular cascades to convert extracellular signals into persistent functional changes in neuronal connectivity. Accumulating evidence suggests that the rapid activation of the genetic machinery is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. The recent developments in the search for the cellular and molecular mechanisms of memory storage are reviewed.  相似文献   

13.
There is growing interest in the evolutionary dynamics of molecular genetic pathways and networks, and the extent to which the molecular evolution of a gene depends on its position within a pathway or network, as well as over-all network topology. Investigations on the relationships between network organization, topological architecture and evolutionary dynamics provide intriguing hints as to how networks evolve. Recent studies also suggest that genetic pathway and network structures may influence the action of evolutionary forces, and may play a role in maintaining phenotypic robustness in organisms.  相似文献   

14.
15.
Recent work has suggested that emergent ecological network structure exhibits very little spatial or temporal variance despite changes in community composition. However, the changes in network interactions associated with turnover in community composition have seldom been assessed. Here we examine whether changes in ecological networks are best detected by standard emergent network metrics or by assessing internal network changes (i.e. interaction and composition turnover). To eliminate possible spatial or phylogenetic effects, that in large‐scale studies may obscure mechanisms structuring networks and interactions, we sampled multiple antagonistic (plant–herbivore) networks for a single diverse plant family (the Restionaceae) in the hyperdiverse Cape Floristic Region. These are the first plant–herbivore networks constructed for this global biodiversity hotspot. We found invariant emergent network structure despite considerable changes in insect and plant composition across communities over time and space. In contrast, there was high interaction turnover between networks. Seasonally, this was driven by turnover in insect species and insect host switching. Spatially, this was driven by simultaneous turnover in plant and insect species, suggesting that many insects are host specific or that both groups exhibit parallel responses to environmental gradients. Spatial interaction turnover was also driven by turnover in plants, showing that many insects can utilise multiple (possibly closely related) hosts and this may create divergent selection gradients that promote insect speciation. Thus we show highly variable interaction fidelity, despite invariant emergent network structure. We suggest that evaluating internal network changes may be more effective at elucidating the processes structuring networks, and many fine‐scale changes may be obscured when only calculating emergent network metrics.  相似文献   

16.
In this study, we resolved discrepancies concerning the experimentally determined structure of benzamide molecular crystals from dispersion-corrected density functional calculations. A clear energy ranking was obtained for the two candidates of the stable (P1) modification of benzamide. This was rationalised by subtle differences of the molecular interactions in the molecular crystal. The potential energy of the different structures was dominated by the interplay of intermolecular attraction and molecular torsion/deformation to accommodate favourable hydrogen-bonded networks. Using suitable proxies arranged in pseudo-crystalline set-ups, we discriminated the contribution of electrostatics, π–π interactions and intra-molecular interactions to the lattice energies.  相似文献   

17.
Contemporary drug discovery and development (DDD) is dominated by a molecular target-based paradigm. Molecular targets that are potentially important in disease are physically characterized; chemical entities that interact with these targets are identified by ex vivo high-throughput screening assays, and optimized lead compounds enter testing as drugs. Contrary to highly publicized claims, the ascendance of this approach has in fact resulted in the lowest rate of new drug approvals in a generation. The primary explanation for low rates of new drugs is attrition, or the failure of candidates identified by molecular target-based methods to advance successfully through the DDD process. In this essay, I advance the thesis that this failure was predictable, based on modern principles of metabolic control that have emerged and been applied most forcefully in the field of metabolic engineering. These principles, such as the robustness of flux distributions, address connectivity relationships in complex metabolic networks and make it unlikely a priori that modulating most molecular targets will have predictable, beneficial functional outcomes. These same principles also suggest, however, that unexpected therapeutic actions will be common for agents that have any effect (i.e., that complexity can be exploited therapeutically). A potential operational solution (pathway-based DDD), based on observability rather than predictability, is described, focusing on emergent properties of key metabolic pathways in vivo. Recent examples of pathway-based DDD are described. In summary, the molecular target-based DDD paradigm is built on a na?ve and misleading model of biologic control and is not heuristically adequate for advancing the mission of modern therapeutics. New approaches that take account of and are built on principles described by metabolic engineers are needed for the next generation of DDD.  相似文献   

18.
MOTIVATION: The study of biological systems, pathways and processes relies increasingly on analyses of networks. Most often, such analyses focus on network topology, thereby treating all proteins or genes as identical, featureless nodes. Integrating molecular data and insights about the qualities of individual proteins into the analysis may enhance our ability to decipher biological pathways and processes. RESULTS: Here, we introduce a novel platform for data integration that generates networks on the macro system-level, analyzes the molecular characteristics of each protein on the micro level, and then combines the two levels by using the molecular characteristics to assess networks. It also annotates the function and subcellular localization of each protein and displays the process on an image of a cell, rendering each protein in its respective cellular compartment. By thus visualizing the network in a cellular context we are able to analyze pathways and processes in a novel way. As an example, we use the system to analyze proteins implicated with Alzheimers disease and show how the integrated view corroborates previous observations and how it helps in the formulation of new hypotheses regarding the molecular underpinnings of the disease. AVAILABILITY: http://www.rostlab.org/services/pinat.  相似文献   

19.
Kiehn O  Kullander K 《Neuron》2004,41(3):317-321
Central pattern generators (CPGs) are localized neuronal networks that have the ability to produce rhythmic movements even in the absence of movement-related sensory feedback. They are found in all animals, including man, and serve as informative model systems for understanding how neuronal networks produce behavior. Traditionally, CPGs have been investigated with electrophysiological techniques. Here we review recent molecular and genetic approaches for dissecting the organization and development of CPGs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号