首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Screening for specific genetic aberrations by fluorescence and chromogenic in situ hybridization (fluorescence in situ hybridization (FISH) and chromogenic in situ hybridization (CISH)) can reveal associations with tumor types or subtypes, cellular morphology and clinical behavior. FISH and CISH methodologies are based on the specific annealing (hybridization) of labeled genomic sequences (probes) to complementary nucleic acids within fixed cells to allow their detection, quantification and spatial localization. Formalin-fixed paraffin embedded (FFPE) material is the most widely available source of tumor samples. Increasingly, tissue microarrays (TMAs) consisting of multiple cores of FFPE material are being used to enable simultaneous analyses of many archival samples. Here we describe robust protocols for the FISH and CISH analyses of genetic aberrations in FFPE tissue, including TMAs. Protocols include probe preparation, hybridization and detection. Steps are described to reduce background fluorescence and strip probes for repeat FISH analyses to maximize the use of tissue resources. The basic protocol takes 2-3 d to complete.  相似文献   

2.
We present a novel method using flow cytometry–fluorescence in situ hybridization (flow–FISH) to detect specific messenger RNA (mRNA) in suspended cells using locked nucleic acid (LNA)-modified oligonucleotide probes. β-Actin mRNA was targeted in whole A549 epithelial cells by hybridization with a biotinylated, LNA-modified probe. The LNA bound to β-actin was then stained using phycoerythrin-conjugated streptavidin and detected by flow cytometry. Shifts in fluorescence signal intensity between the β-actin LNA probe and a biotinylated, nonspecific control LNA were used to determine optimal conditions for this type of flow–FISH. Multiple conditions for permeabilization and hybridization were tested, and it was found that conditions using 3 μg/ml of proteinase K for permeabilization and 90 min hybridization at 60 °C with buffer containing 50% formamide allow cells containing the LNA-bound mRNA to be detected and differentiated from the control LNA with high confidence (< 14% overlap between curves). This combined method, called LNA flow–FISH, can be used for detection and quantification of other RNA species as well as for telomerase measurement and detection.  相似文献   

3.
We tested DNA probes directly labeled by fluorescently labeled nucleotides (Cy3-dCTP, Cy5-dCTP, FluorX-dCTP) for high resolution uni- and multicolor detection of human chromosomes and analysis of centromeric DNA organization by in situ hybridization. Alpha-satellite DNA probes specific to chromosomes 1, 2, 3, 4 + 9, 5 + 19, 6, 7, 8, 10, 11, 13 + 21, 14 + 22, 15, 16, 17, 18, 20, 22, X and Y were suitable for the accurate identification of human chromosomes in metaphase and interphase cells. Cy3-labeled probes had several advantages: (1) a high level of fluorescence (5–10 times more compared with fluorescein-labeled probes); (2) a low level of fluorescence in solution, allowing the detection of target chromosomes in situ during hybridization without the washing of slides; and (3) high resistance to photobleaching during prolonged (1-2 h) exposure to strong light, thus allowing the use of a high energy mercury lamp or a long integration time during image acquisition in digital imaging microscopy for the determination of weak signals. For di- and multicolor fluorescence in situ hybridization (FISH), we successfully used different combinations of directly fluorophorated probes with preservation of images by conventional microscopy or by digital imaging microscopy. FluorX and Cy3 dyes allowed the use of cosmid probes for mapping in a one-step hybridization experiment. Cyanine-labeled fluorophorated DNA probes offer additional possibilities for rapid chromosome detection during a simple 15-min FISH procedure, and can be recommended for basic research and clinical studies, utilizing FISH.  相似文献   

4.
背景:染色体相互易位在人群中比较常见,下一代常常产生相同或不同的易位,易导致容易流产,而植入前诊断方法之一的CGH难以检测到相互易位,因此原位杂交(FISH)依然是解决诊断相互易位的有力手段。目的:通过设计个体化的FISH探针,制备探针,并在卵裂球单细胞水平进一步验证探针的准确性,为筛选正常核型的囊胚进行植入奠定技术基础,为个体化的FISH探针植入前诊断提供应用研究基础。方法:通过设计1 q和6p平衡易位探针,进行探针标记,再采用患者和正常人核型验证探针质量,通过荧光原位杂交技术进一步检测正常人受精后的卵裂球中1q 和6p平衡易位对易位染色体状态。结果:3个卵接球裂均呈现单个完整细胞核,荧光原位杂交中各细胞核均有清晰明亮的杂交信号。信号数分别为2。均为正常胚胎,可以考虑进一步对该易位患者进行卵裂球进行诊断,上述研究对个体化的易位探针的应用研究提供了研究基础。  相似文献   

5.
6.
X and Y specific probes were identified in order to apply the fluorescent in situ hybridization (FISH) technique to bovine spermatozoa. For Y chromosome detection, the BRY4a repetitive probe, covering three quarters of the chromosome, was used. For X chromosome detection, a goat Bacterial Artificial Chromosome (BAC) specific to the X chromosome of bovine and goats and giving a strong FISH signal was used. Each probe labeled roughly 45% of sperm cells. The hybridization method will be useful for evaluating the ratio of X- and Y- bearing spermatozoa in a sperm sample and consequently can be used to evaluate the efficiency of sperm sorting by different techniques such as flow cytometry.  相似文献   

7.
A method was developed to detect a specific strain of bacteria in wheat root rhizoplane using fluorescence in situ hybridization and confocal microscopy. Probes targeting both 23S rRNA and messenger RNA were used simultaneously to achieve detection of recombinant Pseudomonas putida (TOM20) expressing toluene o-monooxygenase (tom) genes and synthetic phytochelatin (EC20). The probe specific to P. putida 23S rRNA sequences was labeled with Cy3 fluor, and the probe specific to the tom genes was labeled with Alexa647 fluor. Probe specificity was first determined, and hybridization temperature was optimized using three rhizosphere bacteria pure cultures as controls, along with the P. putida TOM20 strain. The probes were highly specific to the respective targets, with minimal non-specific binding. The recombinant strain was inoculated into wheat seedling rhizosphere. Colonization of P. putida TOM20 was confirmed by extraction of root biofilm and growth of colonies on selective agar medium. Confocal microscopy of hybridized root biofilm detected P. putida TOM20 cells emitting both Cy3 and Alexa647 fluorescence signals.  相似文献   

8.
A fluorescence in situ hybridization (FISH) technique has been developed for the fluorescent labelling of Cryptosporidium parvum oocysts in water samples. The FISH technique employs a fluorescently labelled oligonucleotide probe (Cry1 probe) targeting a specific sequence in the 18S ribosomal RNA (rRNA) of C. parvum. Hybridization with the Cry1 probe resulted in fluorescence of sporozoites within oocysts that were capable of excystation, while oocysts that were dead prior to fixation did not fluoresce. Correlation of the FISH method with viability as measured by in vitro excystation was statistically highly significant, with a calculated correlation coefficient of 0·998. Examination of sequence data for Cryptosporidium spp. other than C. parvum suggests that the Cry1 probe is C. parvum -specific. In addition, 19 isolates of C. parvum were tested, and all fluoresced after hybridization with the Cry1 probe. Conversely, isolates of C. baileyi and C. muris were tested and found not to fluoresce after hybridization with the Cry1 probe. The fluorescence of FISH-stained oocysts was not bright enough to enable detection of oocysts in environmental water concentrates containing autofluorescent algae and mineral particles. However, in combination with immunofluorescence staining, FISH enabled species-specific detection and viability determination of C. parvum oocysts in water samples.  相似文献   

9.
【目的】以西方蜜蜂Apis mellifera工蜂肠道为例探究组织透明化技术--丙烯酰胺交联替换脂质透明硬化成像/免疫染色/原位杂交兼容组织水凝胶(clear lipid-exchanged acrylamide-hybridized rigid imaging/immunostaining/in situ hybridization-compatible tissue-hYdrogel, CLARITY)在昆虫组织上的应用,确定CLARITY与荧光原位杂交(FISH)相结合在昆虫肠道组织透明化中的适用性。【方法】依照CLARITY技术操作程序,用水凝胶固定西方蜜蜂肠道,并以被动方式透明化,再用靶向东方蜜蜂微孢子虫Nosema ceranae 16S rRNA带异硫氰酸荧光素(fluorescein isothiocyanate, FITC)标记和靶向真核细胞18S rRNA带Texas RED标记的寡核苷酸荧光探针进行肠道组织的荧光原位杂交,然后用DAPI(蓝色)进行细胞核复染,通过激光共聚焦显微镜观察透明化的染色组织。【结果】首次成功将西方蜜蜂肠道组织透明化。在激光共聚焦显微镜下,观察到马氏管的原始分布形态,以及东方蜜蜂微孢子虫在中肠末端分布更密集的空间分布特征,并实现了对肠道组织的3D重构。【结论】CLARITY能应用于蜜蜂肠道组织透明化,透明化组织能进行原位杂交和激光共聚焦观察。CLARITY和FISH相结合免除抗体制备和石蜡切片的麻烦,直观展示肠道内部的真实状态,为昆虫生理病理研究提供了一种可靠特异的标记方法。  相似文献   

10.
A method is presented for fluorescence in situ hybridization (FISH) of 16S rRNA gene clones targeting in vivo transcribed plasmid inserts (Clone-FISH). Several different cloning approaches and treatments to generate target-rRNA in the clones were compared. Highest signal intensities of Clone-FISH were obtained using plasmids with a T7 RNA polymerase promoter and host cells with an IPTG-inducible T7 RNA polymerase. Combined IPTG-induction and chloramphenicol treatment of those clones resulted in FISH signals up to 2.8-fold higher than signals of FISH with probe EUB338 to cells of Escherichia coli. Probe dissociation curves for three oligonucleotide probes were compared for reference cells containing native (FISH) or cloned (Clone-FISH) target sequences. Melting behaviour and calculated T(d) values were virtually identical for clones and cells, providing a format to use 16S rRNA gene clones instead of pure cultures for probe validation and optimization of hybridization conditions. The optimized Clone-FISH protocol was also used to screen an environmental clone library for insert sequences of interest. In this application format, 13 out of 82 clones examined were identified to contain sulphate-reducing bacterial rRNA genes. In summary, Clone-FISH is a simple and fast technique, compatible with a wide variety of cloning vectors and hosts, that should have general utility for probe validation and screening of clone libraries.  相似文献   

11.
Several methods were tested that would improve the fluorescence signal from hybridized rumen bacterial cells. Disruption of cell envelopes by lysozyme, EDTA, proteinase K and/or SDS caused only a minor increase in fluorescence signal. Use of helper unlabeled oligonucleotide probes was successful only with the Puni[H672] probe which, however, when used with specific PBBl4-labeled probe, gave fluorescence signal drop. No substantial rise in fluorescence signal was also observed with cells subjected to growth-without-cell-division treatment. Further improvements are needed to make the fluorescent in situ hybridization (FISH)-flow cytometry combination applicable to rumen bacteria.  相似文献   

12.
Respiring Pseudomonas spp. in milk were quantified within 6 h by fluorescence in situ hybridization (FISH) with vital staining. FISH with an oligonucleotide probe based on 16S rRNA sequences was used for the specific detection of Pseudomonas spp. at the single cell level. 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was used to estimate bacterial respiratory activity. The numbers of respiring Pseudomonas cells as determined by FISH with CTC staining (CTC-FISH) were almost the same or higher than the numbers of CFU as determined by the conventional culture method.  相似文献   

13.
The authors applied fluorescence in situ hybridization (FISH) technique for the detection of chromosome aberration in interphase nuclei using the probe specific to alphoid repeats on chromosome 11 and X. Chromosome 11 specific probe showed two major spots in lymphocyte nuclei, while X specific probe showed single spot in male and double spots in female respectively. On the other hand three spots were detected in most of the nuclei from HeLa cells with 11 and X specific probes. We concluded that FISH with the use of chromosome specific probe may become a useful and reliable tool for the detection of chromosome aberration in interphase nuclei.  相似文献   

14.
Chen G  Zhang C  Zhang B  Wang G  Lu D  Xu Z  Yan P 《PloS one》2011,6(10):e25527
Prorocentrum donghaiense is a common but dominant harmful algal bloom (HAB) species, which is widely distributed along the China Sea coast. Development of methods for rapid and precise identification and quantification is prerequisite for early-stage warning and monitoring of blooms due to P. donghaiense. In this study, sequences representing the partial large subunit rDNA (D1-D2), small subunit rDNA and internal transcribed spacer region (ITS-1, 5.8S rDNA and ITS-2) of P. donghaiense were firstly obtained, and then seven candidate DNA probes were designed for performing fluorescence in situ hybridization (FISH) tests on P. donghaiense. Based on the fluorescent intensity of P. donghaiense cells labeled by the DNA probes, the probe DP0443A displayed the best hybridization performance. Therefore, a PNA probe (PP0443A) analogous to DP0443A was used in the further study. The cells labeled with the PNA probe displayed more intensive green fluorescence than that labeled with its DNA analog. The PNA probe was used to hybridize with thirteen microalgae belonging to five families, i.e., Dinophyceae, Prymnesiophyceae, Raphidophyceae, Chlorophyceae and Bacillariophyceae, and showed no visible cross-reaction. Finally, FISH with the probes PP0443A and DP0443A and light microscopy (LM) analysis aiming at enumerating P. donghaiense cells were performed on the field samples. Statistical comparisons of the cell densities (cells/L) of P. donghaiense in the natural samples determined by FISH and LM were performed using one-way ANOVA and Duncan's multiple comparisons of the means. The P. donghaiense cell densities determined by LM and the PNA probe are remarkably higher than (p<0.05) that determined by the DNA probe, while no significant difference is observed between LM and the PNA probe. All results suggest that the PNA probe is more sensitive that its DNA analog, and therefore is promising for the monitoring of harmful algal blooms of P. donghaiense in the future.  相似文献   

15.
We have designed a doubly thiazole orange labeled nucleoside showing high fluorescence intensity for a hybrid with the target DNA and effective quenching for a single-stranded state. Knowing how much the fluorescence emission and quenching of this probe depend on the probe sequence and why there is such a sequence dependence is important for effective probe design, we synthesized more than 30 probe sequences and measured their fluorescence intensities. When the probe hybridized with the target DNA strands, there was strong emission, whereas the emission intensity was much weaker before hybridization; however, self-dimerization of probes suppressed fluorescence quenching. In particular, the G/C base pairs neighboring the labeled nucleotide in a self-dimeric structure resulted in a low quenching ability for the probe before hybridization. On the other hand, mismatched base pair formation around the labeled site decreased the fluorescence intensity because the neighboring sequence is the binding site of the tethered thiazole orange dyes. The hybridization enhanced the fluorescence of the probe even when the labeled nucleotide was located at the end of the probe strand; however, the partial lack of duplex structure resulted in a decrease in the fluorescence intensity of the hybrid.  相似文献   

16.
Sequential mRNA fluorescence in situ hybridization (mRNA FISH) and fluorescence-assisted cell sorting (SmRFF) was used for the identification of nitrite-reducing bacteria in mixed microbial communities. An oligonucleotide probe labeled with horseradish peroxidase (HRP) was used to target mRNA of nirS, the gene that encodes nitrite reductase, the enzyme responsible for the dissimilatory reduction of nitrite to nitric oxide. Clones for nirS expression were constructed and used to provide proof of concept for the SmRFF method. In addition, cells from pure cultures of Pseudomonas stutzeri and denitrifying activated sludge were hybridized with the HRP probe, and tyramide signal amplification was performed, conferring a strongly fluorescent signal to cells containing nirS mRNA. Flow cytometry-assisted cell sorting was used to detect and physically separate two subgroups from a mixed microbial community: non-fluorescent cells and an enrichment of fluorescent, nitrite-reducing cells. Denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of 16S ribosomal RNA (rRNA) genes were used to compare the fragments amplified from the two sorted subgroups. Sequences from bands isolated from DGGE profiles suggested that the dominant, active nitrite reducers were closely related to Acidovorax BSB421. Furthermore, following mRNA FISH detection of nitrite-reducing bacteria, 16S rRNA FISH was used to detect ammonia-oxidizing and nitrite-oxidizing bacteria on the same activated sludge sample. We believe that the molecular approach described can be useful as a tool to help address the longstanding challenge of linking function to identity in natural and engineered habitats.  相似文献   

17.
FISH landmarks for barley chromosomes (Hordeum vulgare L.).   总被引:4,自引:0,他引:4  
Barley metaphase chromosomes (2n = 14) can be identified by fluorescence in situ hybridization (FISH) and digital imaging microscopy using heterologous 18S rDNA and 5S rDNA probe sequences. When these sequences are used together, FISH landmark signals were seen so that all 7 chromosomes were uniquely identified and unambiguously oriented. The chromosomal location of the landmark signals was determined by FISH to a barley trisomic series using the 18S and 5S probes labeled with different fluorophores. The utility of these FISH landmarks for barley physical mapping was also demonstrated when an Amy-2 cDNA clone and a BAC clone were hybridized with the FISH landmark probes.  相似文献   

18.
As the pioneer among molecular cytogenetics techniques, fluorescence in situ hybridization (FISH) allows identification of specific sequences in a structurally preserved cell, in metaphase or interphase. This technique, based on the complementary double-stranded nature of DNA, hybridizes labeled specific DNA (probe). The probe, bound to the target, will be developed into a fluorescent signal. The fact that the signal can be detected clearly, even when fixed in interphase, improves the accuracy of the results, since in some cases it is extremely difficult to obtain mitotic samples. FISH is still used mostly in research, but there are diagnostic applications. New nomenclature is being developed in order to define many of the aberrations that were not distinguished before FISH. Prenatal diagnosis of aneuploidies and malignancies are promptly detected with FISH, which is very useful in critical cases. In some tumors, where chromosomal abnormalities are too complicated to classify manually, the technique of comparative genomic hybridization (CGH), a competitive FISH, allows examiners to determine complete or partial gain or loss of chromosomes. CGH results allow the classification of many tumor cell lines and along with other complementary techniques, like microdissection-FISH, PRINS, etc., increase the possibility of choosing an appropriate treatment for cancer patients.  相似文献   

19.
M Nenno  K Schumann  W Nagl 《Génome》1994,37(6):1018-1021
This is the first report of fluorescence in situ hybridization (FISH) on plant polytene chromosomes. Different protease pretreatments have been tested to improve fluorescence in situ hybridization FISH on polytene chromosomes of a plant, Phaseolus coccineus, with the aim to enable the detection of low-copy genes. The structural preservation of the chromosomes and the distinctness of the FISH signals were comparatively analysed with a probe for the ribosomal RNA genes after digestion with pepsin and trypsin. The pepsin pretreatment resulted in a general loosening of chromatin with good conservation of chromosome morphology and an increased number and density of signal points. The six nucleolus organizers exhibited significant differences in condensation. The pretreatment with pepsin enabled the detection of the low-copy genes encoding the seed storage protein phaseolin.  相似文献   

20.
The evaluation of bacteriophage (phage) host range is a significant issue in understanding phage and prokaryotic community interactions. However, in conventional methods, such as plaque assay, target host strains must be isolated, although almost all environmental prokaryotes are recalcitrant to cultivation. Here, we introduce a novel phage host range evaluation method using fluorescently labeled phages (the FLP method), which consists of the following four steps: (i) Fluorescently labeled phages are added to a microbial consortium, and host cells are infected and fluorescently labeled. (ii) Fluorescent cells are sorted by fluorescence-activated cell sorting. (iii) 16S rRNA gene sequences retrieved from sorted cells are analyzed, and specific oligonucleotide probes for fluorescence in situ hybridization (FISH) are designed. (iv) Cells labeled with both fluorescently labeled phage and FISH probe are identified as host cells. To verify the feasibility of this method, we used T4 phage and Escherichia coli as a model. We first used nucleic acid stain reagents for phage labeling; however, the reagents also stained non-host cells. Next, we employed the Click-iT EdU (5-ethynyl-2'-deoxyuridine) assay kit from Invitrogen for phage labeling. Using EdU-labeled T4 phage, we could specifically detect E. coli cells in a complex microbial consortium from municipal sewage. We also confirmed that FISH could be applied to the infected E. coli cells. These results suggest that this FLP method using the EdU assay kit is a useful method for evaluating phage host range and may have a potential application for various types of phages, even if their prokaryotic hosts are currently unculturable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号