首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The honeybees Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc) are two different western and eastern bee species that evolved in distinct ecologies and developed specific antennal olfactory systems for their survival. Knowledge of how their antennal olfactory systems function in regards to the success of each respective bee species is scarce. We compared the antennal morphology and proteome between respective sexually mature drones and foraging workers of both species using a scanning electron microscope, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction. Despite the general similarities in antennal morphology of the drone and worker bees between the two species, a total of 106 and 100 proteins altered their expression in the drones' and the workers' antennae, respectively. This suggests that the differences in the olfactory function of each respective bee are supported by the change of their proteome. Of the 106 proteins that altered their expression in the drones, 72 (68%) and 34 (32%) were overexpressed in the drones of Aml and Acc, respectively. The antennae of the Aml drones were built up by the highly expressed proteins that were involved in carbohydrate metabolism and energy production, molecular transporters, antioxidation, and fatty acid metabolism in contrast to the Acc drones. This is believed to enhance the antennal olfactory functions of the Aml drones as compared to the Acc drones during their mating flight. Likewise, of the 100 proteins with expression changes between the worker bees of the two species, 67% were expressed in higher levels in the antennae of Aml worker contrasting to 33% in the Acc worker. The overall higher expressions of proteins related to carbohydrate metabolism and energy production, molecular transporters, and antioxidation in the Aml workers compared with the Acc workers indicate the Aml workers require more antennal proteins for their olfactory mechanisms to perform efficient foraging activities than do the Acc worker bees. These data decipher the mechanisms of the western and eastern drone and worker bees acting in response to their different olfactory system in their distinct ecosystem.  相似文献   

2.
Antennal afferent pathway topography was studied in the queen honey bee, Apis mellifera L. (Hymenoptera : Apidae) by staining with cobalt chloride applied directly to the cut antennal axons. Antennal lobe organization in the queen was compared with those in worker and drone bees. The organization is similar in queen and worker bees. For the first time in a female insect the possible existence of a macroglomerulus is shown, which may be involved in the processing of species-specific information. A comparative quantitative neuromorphological study of the glomeruli was performed between young queens (8-day old) and 1-yr-old queens. The mean volume of the glomeruli is 46% greater in the older queens.  相似文献   

3.
Field and laboratory bioassays were used to test the preference of the honey bee tracheal mite,Acarapis woodi (Rennie), for drones versus workers. Groups of newly-emerged drones and workers were marked and introduced into either heavily infested colonies (field bioassays) or into the cages of infested bees obtained from the field colonies (laboratory bioassays). Seven days later all of the marked bees in each bioassay were removed. The numbers of mites of each life stage in each drone or worker target bee of each experiment were quantified. Mite prevalence values for the two castes were not found to differ significantly for either experiment. However, the caste of the target bee was shown to influence the migration of the adult female mites. Drones contained a greater number of migratory female mites and greater total numbers of all mite stages as compared to workers. These results indicate that migrating female mites preferentially infest drones and suggest that the role of drones in the dissemination and population dynamics of the tracheal mite needs to be examined further.  相似文献   

4.
Honey bee males and queens mate in mid air and can fly many kilometres on their nuptial flights. The conservation of native honey bees, such as the European black bee (Apis mellifera mellifera), therefore, requires large isolated areas to prevent hybridisation with other subspecies, such as A. m. ligustica or A. m. carnica, which may have been introduced by beekeepers. This study used DNA microsatellite markers to determine the mating range of A. m. mellifera in two adjacent semi-isolated valleys (Edale and Hope Valley) in the Peak District National Park, England, in order to assess their suitability for native honey bee conservation and as isolated mating locations. Three apiaries were set up in each valley, each containing 12 colonies headed by a virgin queen and 2 queenright drone producing hives. The virgin queens were allowed to mate naturally with drones from the hives we had set up and with drones from hives owned by local beekeepers. After mating, samples of worker larvae were taken from the 41 queens that mated successfully and genotyped at 11 DNA microsatellite loci. Paternity analyses were then carried out to determine mating distances and isolation. An average of 10.2 fathers were detected among the 16 worker progeny. After correction for non-detection and non-sampling errors, the mean effective mating frequency of the test queens was estimated to be 17.2, which is a normal figure for honey bees. Ninety percent of the matings occurred within a distance of 7.5 km, and fifty percent within 2.5 km. The maximal mating distance recorded was 15 km. Queens and drones did occasionally mate across the borders between the two valleys, showing that the dividing mountain ridge Losehill does not provide complete isolation. Nevertheless, in the most isolated part of Edale sixty percent of all matings were to drones from Edale hives. The large majority of observed mating distances fell within the range of Hope Valley, making this site a suitable location for the long term conservation of a breeding population of black bees.  相似文献   

5.

Background

Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood.

Methodology/Principal Findings

We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers.

Conclusions/Significance

We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.  相似文献   

6.
This study was conducted to investigate drone rearing activity and semen production of Apis mellifera ligustica and Apis mellifera syriaca . Tendency of worker bees of both subspecies towards egg laying under semiarid conditions were also monitored in the experiments. Differences were not observed in drone brood production between both honeybee subspecies throughout the investigation. Worker bees of both subspecies needed a significantly shorter time to start egg laying during February and March in comparison with the time those workers needed for laying eggs during the remaining months of the study. Syrian bee workers started egg laying earlier than Italian bee workers. Drones from laying workers were much smaller and produced less sperms with more abnormalities than normal drones. Drones produced from queens in May were heavier and produced more sperms with less abnormalities than those produced during the other months. The drone brood rearing of both subspecies tended to follow the same general cycle in 2005 and 2006. The study suggests that virgin queens have a better chance to receive adequate viable sperm amounts from drones in April and May in semiarid Mediterranean conditions.  相似文献   

7.
Successful bidirectional selection for discriminative olfactory learning is reported for drone honey bees (Apis mellifera). Learning performance was evaluated using a discrimination conditioning procedure that required drones to discriminate between an appetitively reinforced odorant and one that was followed by punishment. Selective breeding produced high- and low-learning-performance lines of worker progeny that diverged from performance of workers whose fathers were selected at random. Furthermore, we show that levels of sucrose-induced sensitization are not correlated to learning performance. These results corroborate earlier findings and further demonstrate the power of selection on a haploid (drone) genotype. In addition, this study now shows that the demonstrated differences in learning performance cannot be completely accounted for by alteration of sucrose-induced sensitization. Thus, using this technique, it may be possible to select for associative conditioning without a pleiotropic increase in sensitization. The honey bee will be ideally suited to these types of correlation analyses in future studies.  相似文献   

8.
The Varroa mite infestation level of honey bee, Apis mellifera, worker larvae reared in individual raised cells was 6-fold higher than in the adjacent six cells surrounding them; this differential infestation rate is similar to published values of higher mite infestations of drone cells compared to worker cells. Infestation levels in control cells were the same as in the surrounding cells. In contrast to infestation of these individually raised cells, Varroa mites invaded worker larvae in raised cells along the perimeter of a patch of raised cells (10 by 21 rows) 2.5 times more often than surrounding unraised cells, and similarly ca. 2.5 times more often than in the remaining raised cells (interior) of this patch. In similarly prepared frames of drone comb, Varroa mites invaded individually raised drone cells 3.3-fold more often than the adjacent surrounding cells and control cells. On the other hand, Varroa mites infested drone larvae in the interior of the raised-patch area as often as drones in raised cells along the perimeter of the raised-patch, and this rate was ca. 2.5-fold higher than for drone larvae in unraised cells surrounding the raised-patch and drone larvae in control cells. The higher levels of infestation of raised cells did not come at the expense of the surrounding cells, i.e., the infestation levels of the adjacent surrounding cells were the same as in control cells. For worker larvae, the increased number of mites invading individual raised cells and edge cells of the raised patch were proportional to the number of surrounding nonraised cells. The relationship between raised cell-edges, observations of mite walking behavior on comb surfaces, and larval-to-cell-rim distances are discussed in relation to their possible roles in eliciting mite invasion of honey bee larval cells and contrasted to the putative role of kairomones in larval-host location.  相似文献   

9.
The glomerular organization of the primary olfactory brain center, the antennal lobe, was studied in males and females of Holotrichia diomphalia adults using serial histological sections labeled by the reduced silver-stain technique. The results revealed an apparent sexual dimorphism. Whereas an enlarged cap-shaped glomerulus was found at the antennal nerve entrance into the antennal lobe in males, no such unit was present in females. Also the size of the antennal lobe differed between the sexes, the antennal lobe of males being larger than that of females. We estimated the total number of glomeruli at approximately 60 units in the female antennal lobe. In males, we could discriminate only those glomeruli that were located in the anterior area of the antennal lobe.  相似文献   

10.
Colony reproduction in honey bees involves complex interactions between sterile workers and reproductive castes. Although worker–queen interactions have been studied in detail, worker–drone interactions are less well understood. We investigated caste interactions in honey bees by determining the age and behavior of workers that perform vibration signals, trophallaxis, and grooming with drones. Workers of all ages could engage in the different interactions monitored, although workers that performed vibration signals on drones were significantly older than those engaging in trophallaxis and grooming. Only 3–8% of workers engaged in the different behaviors were monitored. Compared with workers that performed vibration signals only on workers (‘worker vibrators’), those that performed signals on both workers and drones (‘drone vibrators’) had greater movement rates inside the nest, higher vibration signaling rates, and were more likely to have an immediate association with foraging. Both worker vibrators and drone vibrators contacted drones of all ages as they moved through the nest. However, drone vibrators contacted drones at higher rates, contacted slightly, but significantly younger drones, and were more likely to engage in trophallaxis and grooming with drones, in addition to vibrating them. Taken together, our results suggest that tiny proportions of workers belonging to separate, but overlapping age groups provide most of the care received by adult drones, and that drone vibrators comprise a subset of signalers within a colony that have an increased tendency to contact and interact with drones. Vibratory, tactile signals are involved in colony reproductive and movement decisions in a number of species of bees, wasps and ants, and may provide valuable tools for investigating caste interactions in many insect societies.  相似文献   

11.
In its native Europe, the bumblebee, Bombus terrestris (L.) has co-evolved with a large array of parasites whose numbers are negatively linked to the genetic diversity of the colony. In Tasmania B. terrestris was first detected in 1992 and has since spread over much of the state. In order to understand the bee’s invasive success and as part of a wider study into the genetic diversity of bumblebees across Tasmania, we screened bees for co-invasions of ectoparasitic and endoparasitic mites, nematodes and micro-organisms, and searched their nests for brood parasites. The only bee parasite detected was the relatively benign acarid mite Kuzinia laevis (Dujardin) whose numbers per bee did not vary according to region. Nests supported no brood parasites, but did contain the pollen-feeding life stages of K. laevis. Upon summer-autumn collected drones and queens, mites were present on over 80% of bees, averaged ca. 350–400 per bee and were more abundant on younger bees. Nest searching spring queens had similar mite numbers to those collected in summer-autumn but mite numbers dropped significantly once spring queens began foraging for pollen. The average number of mites per queen bee was over 30 fold greater than that reported in Europe. Mite incidence and mite numbers were significantly lower on worker bees than drones or queens, being present on just 51% of bees and averaging 38 mites per bee. Our reported incidence of worker bee parasitism by this mite is 5–50 times higher than reported in Europe. That only one parasite species co-invaded Tasmania supports the notion that a small number of queens founded the Tasmanian population. However, it is clearly evident that both the bee in the absence of parasites, and the mite have been extraordinarily successful invaders. Received 12 April 2006; revised 10 November 2006; accepted 15 November 2006.  相似文献   

12.
The topography of the antennal afferent pathway has been studied in detail for the first time in a myriapod, Cylindroiulus punctatus, by cellular staining, following localized application of cobalt chloride to the cut end of one antenna. At the lateral entrance of the sensory antennal nerve into the deutocerebrum, 3 main groups of tracts have been distinguished. In the antennal lobe, there are two groups of glomeruli: a ventral group of 3 glomeruli and a dorsal group of 15 or 16 glomeruli. The number, position and dimensions of the glomeruli indicate that the glomerular organization is globally invariant (5 individuals).  相似文献   

13.
In the honeybee Apis mellifera, a sting pheromone produced by sting glands plays an important role in coordinating defensive behavior. This pheromone is a blend constituted by several components. Little is known about the neural substrates underlying sting pheromone processing in the bee brain. Here, we investigated the neural activity elicited by eight components (five acetates and three alcohols) of the sting pheromone, and by real bee stings at the level of the antennal lobe (AL) of worker honeybees. We used in vivo calcium imaging to record odor-induced neural activity of 22 identified glomeruli in the AL. We found that acetates mainly activated medial glomeruli while alcohols mainly activated lateral dorsal glomeruli. The sting preparation evoked a glomerular pattern that was clearly distinct from those of individual pheromone components. No particular region of the imaged AL was found to process sting pheromone or any of its components. Further analyses in a putative honeybee olfactory space showed that the neural activity elicited by sting preparation cannot be linearly predicted by those of pheromone components and that such components are not clearly separated from non-sting pheromone odors. We conclude that sting pheromone is processed in the worker honeybee AL following the same principles of general odors so that the chemical structure of odorants is the main determinant of glomerular activation, rather than their pheromonal values. We cannot exclude, however, that the distinctness of sting-pheromone representation with respect to that of its components constitutes a form of specialized neural processing strategy for this kind of substance.  相似文献   

14.
The antennae of honeybee (Apis mellifera) workers and drones differ in various aspects. One striking difference is the presence of Sensilla basiconica in (female) workers and their absence in (male) drones. We investigate the axonal projection patterns of olfactory receptor neurons (ORNs) housed in S. basiconica in honeybee workers by using selective anterograde labeling with fluorescent tracers and confocal-microscopy analysis of axonal projections in antennal lobe glomeruli. Axons of S. basiconica-associated ORNs preferentially projected into a specific glomerular cluster in the antennal lobe, namely the sensory input-tract three (T3) cluster. T3-associated glomeruli had previously been shown to be innervated by uniglomerular projection (output) neurons of the medial antennal lobe tract (mALT). As the number of T3 glomeruli is reduced in drones, we wished to determine whether this was associated with the reduction of glomeruli innervated by medial-tract projection neurons. We retrogradely traced mALT projection neurons in drones and counted the innervated glomeruli. The number of mALT-associated glomeruli was strongly reduced in drones compared with workers. The preferential projections of S. basiconica-associated ORNs in T3 glomeruli together with the reduction of mALT-associated glomeruli support the presence of a female (worker)-specific olfactory subsystem that is partly innervated by ORNs from S. basiconica and is associated with the T3 cluster of glomeruli and mALT projection neurons. We propose that this olfactory subsystem supports parallel olfactory processing related to worker-specific olfactory tasks such as the coding of colony odors, colony pheromones and/or odorants associated with foraging on floral resources.  相似文献   

15.
To understand the olfactory mechanism of honeybee antennae in detecting specific volatile compounds in the atmosphere, antennal proteome differences of drone, worker and queen were compared using 2-DE, mass spectrometry and bioinformatics. Therefore, 107 proteins were altered their expressions in the antennae of drone, worker and queen bees. There were 54, 21 and 32 up-regulated proteins in the antennae of drone, worker and queen, respectively. Proteins upregulated in the drone antennae were involved in fatty acid metabolism, antioxidation, carbohydrate metabolism and energy production, protein folding and cytoskeleton. Proteins upregulated in the antennae of worker and queen bees were related to carbohydrate metabolism and energy production while molecular transporters were upregulated in the queen antennae. Our results explain the role played by the antennae of drone is to aid in perceiving the queen sexual pheromones, in the worker antennae to assist for food search and social communication and in the queen antennae to help pheromone communication with the worker and the drone during the mating flight. This first proteomic study significantly extends our understanding of honeybee olfactory activities and the possible mechanisms played by the antennae in response to various environmental, social, biological and biochemical signals.  相似文献   

16.
狄斯瓦螨Varroa destructor Anderson & Trueman是意大利蜜蜂Apis mellifera Spinola的主要外寄生螨。雌成螨在幼虫巢房封盖前不久侵入幼虫巢房,并开始繁殖为害。从雌成螨在一个很短的时间内进入蜜蜂幼虫巢房,以及雄蜂幼虫巢房蜂螨的寄生率明显高于工蜂幼虫巢房的现象,表明蜜蜂幼虫体表一些信息素(semiochemicals)可能起着重要的引诱作用。作者对与大蜂螨相关的19种气味物质进行筛选,并对封盖前工蜂幼虫和雄蜂幼虫表皮挥发物进行气谱及气-质联谱测定。结果表明:雄蜂6龄幼虫对大蜂螨的引诱作用显著高于丁香水等10种气味物质。工蜂和雄蜂末龄幼虫体表挥发物的共有组份是9-二十三烯(C23H46),但它在雄蜂幼虫中所占的比例要明显高于工蜂幼虫。工蜂幼虫的特有主要组分是十八烷(C18H38)和9-甲基十九烷(C19H40);而雄蜂幼虫的特有主要组分是二十五烷(C25H52)和二十三烷(C23H48)。  相似文献   

17.
Antibody labelling and subsequent three-dimensional reconstructions of the primary olfactory centres, the antennal lobes, of male and female African malaria mosquitoes, Anopheles gambiae, revealed 61 and 60 glomerular neuropils respectively. In addition to the small difference in number of glomeruli, sexual dimorphism was observed in both the size of the antennal lobe and of individual glomeruli. Furthermore, sexual specificity was observed within the array. Anterograde staining of afferents from peripheral olfactory organs support the reconstruction of the glomerular array. Although anterograde stainings support an organotopic organization of the antennal lobe, convergence of afferents originating from different organs into single glomeruli is observed. This finding, in both A. gambiae and A. aegypti, may shed new light upon the development and function of the olfactory system.  相似文献   

18.
In colonies of European Apis mellifera, Varroa jacobsoni reproduces both in drone and in worker cells. In colonies of its original Asian host, Apis cerana, the mites invade both drone and worker brood cells, but reproduce only in drone cells. Absence of reproduction in worker cells is probably crucial for the tolerance of A. cerana towards V. jacobsoni because it implies that the mite population can only grow during periods in which drones are reared. To test if non-reproduction of V. jacobsoni in worker brood cells of A. cerana is due to a trait of the mites or of the honey-bee species, mites from bees in A. mellifera colonies were artificially introduced into A. cerana worker brood cells and vice versa. Approximately 80% of the mites from A. mellifera colonies reproduced in naturally infested worker cells as well as when introduced into worker cells of A. mellifera and A. cerana. Conversely, only 10% of the mites from A. cerana colonies reproduced, both in naturally infested worker cells of A. cerana and when introduced into worker cells of A. mellifera. Hence, absence of reproduction in worker cells is due to a trait of the mites. Additional experiments showed that A. cerana bees removed 84% of the worker brood that was artificially infested with mites from A. mellifera colonies. Brood removal started 2 days after artificial infestation, which suggests that the bees responded to behaviour of the mites. Since removal behaviour of the bees will have a large impact on fitness of the mites, it probably plays an important role in selection for differential reproductive strategies. Our findings have large implications for selection programmes to breed less-susceptible bee strains. If differences in non-reproduction are mite specific, we should not only look for non-reproduction as such, but for colonies in which non-reproduction in worker cells is selected. Hence, in selection programmes fitness of mites that reproduce in both drone and worker cells should be compared to fitness of mites that reproduce only in drone cells. © Rapid Science Ltd. 1998  相似文献   

19.
Adult bees, worker brood cells and drone brood cells ofApis florea were examined for the presence of mites by stereo microscope and by washing with soap. Tropilaelaps clareae was only found on adult bees;Euvarroa sinhai on adult bees and drone brood. The level ofT. clareae infestation is always very low, generally not exceeding 0.1%; that ofE. sinhai is somewhat higher. The mites were never found together on a single bee.  相似文献   

20.
Neuronal architecture of the antennal lobe in Drosophila melanogaster   总被引:4,自引:0,他引:4  
Summary Computer reconstruction of the antennal lobe of Drosophila melanogaster has revealed a total of 35 glomeruli, of which 30 are located in the periphery of the lobe and 5 in its center. Several prominent glomeruli are recognizable by their location, size, and shape; others are identifiable only by their positions relative to prominent glomeruli. No obvious sexual dimorphism of the glomerular architecture was observed. Golgi impregnations revealed: (1) Five of the glomeruli are exclusive targets for ipsilateral antennal input, whereas all others receive afferents from both antennae. Unilateral amputation of the third antennal segment led to a loss of about 1000 fibers in the antennal commissure. Hence, about 5/6 of the approximately 1200 antennal afferents per side have a process that extends into the contralateral lobe. (2) Afferents from maxillary palps (most likely from basiconic sensilla) project into both ipsi-and contralateral antennal lobes, yet their target glomeruli are apparently not the same as those of antennal basiconic sensilla. (3) Afferents in the antennal lobe may also stem from pharyngeal sensilla. (4) The most prominent types of interneurons with arborizations in the antennal lobe are: (i) local interneurons ramifying in the entire lobe, (ii) unilateral relay interneurons that extend from single glomeruli into the calyx and the lateral protocerebrum (LPR), (iii) unilateral interneurons that connect several glomeruli with the LPR only, (iv) bilateral interneurons that link a small number of glomeruli in both antennal lobes with the calyx and LPR, (v) giant bilateral interneurons characterized by extensive ramifications in both antennal lobes and the posterior brain and a cell body situated in the midline of the suboesophageal ganglion, and (vi) a unilateral interneuron with extensive arborization in one antennal lobe and the posterior brain and a process that extends into the thorax. These structural results are discussed in the context of the available functional and behavioral data.Abbreviations AC antennal commissure - AMMC antennal mechanosensory and motor center - iACT, mACT, oACT inner/middle/outer antenno-cerebral tract - bACTI, uACTI bilateral/unilateral ACT relay interneuron - AN antennal nerve - AST antenno-suboesophageal tract - FAI fine arborization relay interneuron - GSI giant symmetric relay interneuron - LI local interneuron - LPR lateral protocerebrum - SOG suboesophageal ganglion - TI thoracic relay interneuron - bVI bilateral V-relay interneuron  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号