首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小鼠附睾头精子获得与卵子质膜融合能力的物质基础研究   总被引:1,自引:0,他引:1  
随着精子在附睾中的转运,它们与卵子质膜的融合能力逐渐增加。怩证明2附睾体和附睾尾的精子均具有相当高的膜融合能力,而附睾头中的精了奶少能与卵子质膜融合,这是还说明附睾头中的精子不具备与云透明带卵子融合的物质条件呢?利用附睾结扎留并延长体外获能时间,可使附睾头远端精子的融合能力明显地提高;在精子培养液中加入ATP,并延长精卵共培养时间,也可使一少部分附睾头近端的精子获得与卵子质膜融合的能力。这表明附睾  相似文献   

2.
Vesicular transfer of membrane components to bovine epididymal spermatozoa   总被引:1,自引:0,他引:1  
Epididymosomes (apocrine secreted epididymal vesicles) are assumed to play a crucial role in sperm maturation. Our aim has been to analyze the fusogenic properties of bovine epididymosomes and their involvement in the transfer of membrane components (lipids, proteins, plasma membrane Ca2+-ATPase 4 [PMCA4]) into bovine sperm. The fusogenic properties of epididymosomes with spermatozoa were investigated in vitro by using octadecyl rhodamine-B (R18)-labeled epididymosomes. Spermatozoa isolated from the epididymal caput showed a higher fusion rate than those taken from the cauda. The fusion rate was dependent on pH and time. Furthermore, the lipid and protein content in spermatozoa changed during epididymal transit and after in vitro fusion with epididymosomes. Following the in vitro fusion of caput spermatozoa with epididymosomes, the cholesterol/total phospholipid ratio of the sperm plasma membrane decreased. The effect was comparable with the cholesterol/total phospholipid ratio of native cauda spermatozoa. Co-incubation experiments of spermatozoa with biotinylated epididymosomes additionally revealed that proteins were transferred from epididymosomes to sperm. To examine the potential transfer of epididymis-derived PMCA4 to spermatozoa, immunofluorescence analysis and Ca2+-ATPase activity assays were performed. In caput spermatozoa, the PMCA4 fluorescence signal was slightly raised and Ca2+-ATPase activity increased after in vitro fusion. Thus, our experiments indicate significant changes in the lipid and protein composition of epididymal sperm following interaction with epididymosomes. Moreover, our results substantiate the presumption that PMCA4 is transferred to spermatozoa via epididymosomes.  相似文献   

3.

Background  

Male and female gametes follow diverse developmental pathways dictated by their distinct roles in fertilization. While oocytes of oviparous animals accumulate yolk in the cytoplasm, spermatozoa slough off most of their cytoplasm in the process of individualization. Mammalian spermatozoa released from the testis undergo extensive modifications in the seminal ducts involving a variety of glycoproteins. Ultrastructural studies suggest that glycoproteins are involved in sperm maturation in insects; however, their characterization at the molecular level is lacking. We reported previously that the circadian clock controls sperm release and maturation in several insect species. In the moth, Spodoptera littoralis, the secretion of glycoproteins into the seminal fluid occurs in a daily rhythmic pattern. The purpose of this study was to characterize seminal fluid glycoproteins in this species and elucidate their role in the process of sperm maturation.  相似文献   

4.

Background  

As one of the chlorinated antifertility compounds, alpha-chlorohydrin (ACH) can inhibit glyceraldehyde-3-phosphate dehydrogenase (G3PDH) activity in epididymal sperm and affect sperm energy metabolism, maturation and fertilization, eventually leading to male infertility. Further studies demonstrated that the inhibitory effect of ACH on G3PDH is not only confined to epididymal sperm but also to the epididymis. Moreover, little investigation on gene expression changes in the epididymis after ACH treatment has been conducted. Therefore, gene expression studies may indicate new epididymal targets related to sperm maturation and fertility through the analysis of ACH-treated infertile animals.  相似文献   

5.
Developing spermatozoa require a series of posttesticular modifications within the luminal environment of the epididymis to achieve maturation; this involves several surface modifications including changes in plasma membrane lipids, proteins, carbohydrates, and alterations in the outer acrosomal membrane. Epididymal maturation can therefore allow sperm to gain forward motility and fertilization capabilities. The objective of this study was to identify maturation-dependent protein(s) and to investigate their role with the production of functionally competent spermatozoa. Lectin blot analyses of caput and cauda sperm plasma membrane fractions identified a 17.5 kDa wheat germ agglutinin (WGA)-binding polypeptide present in the cauda sperm plasma membrane not in the caput sperm plasma membrane. Among the several WGA-stained bands, the presence of a 17.5 kDa WGA-binding polypeptide band was detected only in cauda epididymal fluid not in caput epididymal fluid suggesting that the 17.5 kDa WGA-binding polypeptide is secreted from the cauda epididymis and binds to the cauda sperm plasma membrane during epididymal transit. Proteomic identification of the 17.5 kDa polypeptide yielded 13 peptides that matched the sequence of peroxiredoxin-5 (PRDX5) protein (Bos Taurus). We propose that bovine cauda sperm PRDX5 acts as an antioxidant enzyme in the epididymal environment, which is crucial in protecting the viable sperm population against the damage caused by endogeneous or exogeneous peroxide.  相似文献   

6.
We have previously identified a hamster sperm protein, P26h, proposed to be involved in the interaction between spermatozoa and the egg's zona pellucida. In this study we investigated the mechanism of P26h accumulation on hamster spermatozoa during epididymal maturation. Immunocytochemical studies showed an accumulation of P26h on the acrosomal cap of hamster spermatozoa during epididymal transit. To document the anchoring mechanism of P26h, cauda epididymal spermatozoa were exposed to different treatments. High‐salt buffered solutions were unable to remove P26h from the surface of intact spermatozoa. P26h was released in a dose‐dependent manner when live spermatozoa were treated with a solution of phospholipase C specific to phosphatidylinositol. In contrast, the P26h remained associated to the sperm surface following treatment with trypsin. To document the transfer mechanisms of P26h on the maturing spermatozoa, prostasomes were isolated from the epididymal fluid and subjected to immunodetection. Western blots and immunogold studies showed that P26h was associated to epididymal prostasomes. Phospholipase C treatment performed on epididymal prostasomes, indicated that P26h also is anchored to these vesicles via a phosphatidylinositol. These results suggest that epididymal sperm maturation involves a cell to cell transfer of a phosphaditylinositol‐anchored protein and that prostasomes may be implicated in this process. Mol. Reprod. Dev. 52:225–233, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
The surface membrane protein of boar sperm and the proteins in the fluid surrounding the gametes were analyzed during epididymal transit. The present study demonstrated that sequential dramatic changes occur in protein composition of the sperm membrane and epididymal fluid during epididymal transit. The maturation process of the boar sperm surface was characterized by a complex sequential evolution of the composition and orientation of macromolecules in the sperm membrane. Epididymal maturation resulted in the progressive disappearance of most of the surface testicular compounds, which were either renewed or masked by new permanent or transient low molecular weight polypeptides on the boar sperm surface membrane. In the fluid surrounding the spermatozoa, composition of the luminal proteins was altered throughout the epididymal transit and several new compounds were characterized. Very few proteins were correlated either with blood plasma or sperm surface compounds.  相似文献   

8.
The success of acrosomal exocytosis, a complex process with a variety of interrelated steps, relies on the coordinated interaction of participating signaling molecules. Since scaffolding proteins are known to spatially organize sequential signaling pathways, we examined whether the Multi-PDZ domain protein MUPP1, recently identified in mammalian spermatozoa, is functionally active in controlling acrosomal secretion in mammalian sperm cells. To address this question, permeabilized mouse sperm were loaded with inhibitory antibodies against MUPP1 as well as with a photosensitive Ca(2+) chelator which allows a controlled release of acrosomal Ca(2+). The results revealed that MUPP1 controls initial tethering and docking of the acrosomal vesicle, whereas syntaxin 2, a t-SNARE protein also expressed in the acrosomal cap of mammalian spermatozoa, appears to take part in the final process of acrosomal fusion. Interestingly, using immunogold electron microscopy, it was found that MUPP1 is detectable in the region of the periacrosomal membrane. Furthermore, in isolated detergent-insoluble glycolipid-enriched membrane domains from epididymal spermatozoa, MUPP1 was found to show a striking association with the Triton X-100 insoluble membrane fraction, which did not change significantly upon sperm capacitation or partial chemical extraction of cholesterol. This evidence points to a role of MUPP1 as a membrane raft-associated molecular organizer, and suggests that mammalian spermatozoa may use a scaffolding protein and distinct membrane subdomains to spatially organize components involved in the process of acrosomal exocytosis.  相似文献   

9.
Ram spermatozoa were obtained from different regions (caput, corpus, and cauda) of the epididymis and their plasma membrane was removed using a nitrogen cavitation treatment (750 psi, 10 min equilibration at 4 degrees C). Membrane was recovered after sucrose gradient centrifugation and identified using 125I-succinylated concanavalin A (125I-succConA) as a surface marker. Based on fluorescein isothiocyanate-succConA (FITC-succConA) labeling and electron microscopy, cavitation removed plasma membrane from the anterior sperm head in the area overlying the acrosome. Cholesterol was the major sterol in plasma membrane, with desmosterol present in sperm entering the epididymis (caput sperm) but negligible in sperm after epididymal transit (cauda sperm). Ethanolamine and choline phosphoglycerides represented 70-80% of membrane phospholipids, with the ethanolamine fraction decreasing relative to choline phosphoglycerides during epididymal transit. The molar ratio of cholesterol to phospholipid increased in the plasma membrane during maturation. The bulk phospholipid-bound fatty acids consisted primarily of palmitoyl acyl groups (16:0) in caput sperm and docosahexaenoyl acyl groups (22:6) in cauda sperm. The choline phosphoglyceride fraction was purified and analyzed. It consisted of a mixture of ether acyl glycero-3-phosphocholine and diacyl phosphoglyceride, with the dominant acyl residue, at all stages of epididymal maturation, being 22:6 throughout epididymal transit. The significance of these findings relative to acquisition of fertilization capacity by sperm during epididymal maturation is discussed.  相似文献   

10.
Highly purified plasma membranes, isolated by an aqueous two-phase polymer method from goat epididymal spermatozoa, were found to possess a kinase activity that causes phosphorylation of serine and threonine residues of several endogenous plasma membrane proteins. Cyclic AMP, cyclic GMP, Ca(2+)-calmodulin, phosphatidylserine-diolein, polyamines and heparin had no appreciable effect on this kinase. Autoradiographic analysis showed that the profile of the phosphorylation of membrane proteins by this endogenous cAMP-independent protein kinase underwent marked modulation during the transit of spermatozoa through the epididymis. In caput sperm plasma membrane, 18, 21, 43, 52, 74 and 90 kDa proteins were phosphorylated, whereas, in the corpus and cauda epididymal spermatozoa, a differential phosphorylation pattern was observed with respect to the 90, 74, 21 and 18 kDa proteins. The rate of phosphorylation of the 74 kDa protein decreased markedly during the early phase of sperm maturation (caput to distal corpus epididymides) whereas there was little change in kinase activity in sperm plasma membrane. In contrast, the rates of phosphorylation of the 18 and 21 kDa proteins increased during the terminal phase (distal corpus to distal cauda epididymides) of sperm maturity, although the kinase activity of membrane decreased significantly during this phase. The modulation of the phosphorylated states of these specific membrane proteins may play an important role in the maturation of epididymal spermatozoa.  相似文献   

11.
Glioma pathogenesis‐related 1‐like protein1 (GliPr1L1) was identified by liquid chromatography‐tandem mass spectrometry analyses of proteins associated to bovine sperm lipid raft membrane domains. This protein belongs to the CAP superfamily including cysteine‐rich secretory proteins, Antigen 5 and pathogenesis‐related 1 protein. PCR analysis revealed that GliPr1L1 is expressed in testis and, at a much lower level, all along the epididymis. Western blotting showed a similar distribution of GliPr1L1 in testicular and epididymal tissue extracts. In the epididymal lumen, GliPr1L1 was associated with the maturing spermatozoa and epididymosomes all along the excurrent duct but was undetectable in the soluble fraction of epididymal fluid. The protein was detectable as multiple isoforms with a higher MW form in the testis and proximal caput. Treatments with PNGase F revealed that N‐glycosylation was responsible of multiple bands detected on Western blots. These results suggest that the N‐glycosylation moiety of GliPr1L1 is processed during the transit in the caput. Western blots demonstrated that GliPr1L1 was associated with the sperm plasma membrane preparation. GliPr1L1 is glycosyl phosphatidyl inositol (GPI) anchored to caput and cauda spermatozoa as demonstrated by the ability of phosphatidylinositol specific phospholipase C to release GliPr1L1 from intact sperm cells. Lipid raft membrane domains were separated from caput and cauda epididymal spermatozoa. GliPr1L1 was immunodetectable in the low buoyant density fractions where lipid rafts are distributed. GliPr1L1 was localized on sperm equatorial segment and neck. In vitro fertilization performed in presence of anti‐GliPr1L1 showed that this protein is involved in sperm–zona pellucida interaction. J. Cell. Physiol. 227: 3876–3886, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The final maturation of spermatozoa produced in the testis takes place during their passage through the epididymis. In this process, the proteins secreted into the epididymal lumen along with changes in the pH and salt composition of the epididymal fluid cause several biochemical changes and remodeling of the sperm plasma membrane. The Crisp family is a group of cysteine-rich secretory proteins that previously consisted of three members, one of which-CRISP1-is an epididymal protein shown to attach to the sperm surface in the epididymal lumen and to inhibit gamete membrane fusion. In the present paper, we introduce a new member of the Crisp protein family, CRISP4. The new gene was discovered through in silico analysis of the epididymal expressed sequence tag library deposited in the UniGene database. The peptide sequence of CRISP4 has a signal sequence suggesting that it is secreted into the epididymal lumen and might thus interact with sperm. Unlike the other members of the family, Crisp4 is located on chromosome 1 in a cluster of genes encoding for cysteine-rich proteins. Crisp4 is expressed in the mouse exclusively in epithelial cells of the epididymis in an androgen-dependent manner, and the expression of the gene starts at puberty along with the onset of sperm maturation. The identified murine CRISP4 peptide has high homology with human CRISP1, and the homology is higher than that between murine and human CRISP1, suggesting that CRISP4 represents the mouse counterpart of human CRISP1 and could have similar effects on sperm membrane as mouse and human CRISP1.  相似文献   

13.
Maturing spermatozoa acquire full fertilization competence by undergoing major changes in membrane fluidity and protein composition and localization. In epididymal spermatozoa, several proteins are associated with cholesterol- and sphingolipid-enriched detergent-resistant membrane (DRM) domains. These proteins dissociate from DRM in capacitated sperm cells, suggesting that DRM may play a role in the redistribution of integral and peripheral proteins in response to cholesterol removal. Since seminal plasma regulates sperm cell membrane fluidity, we hypothesized that seminal plasma factors could be involved in DRM disruption and redistribution of DRM-associated proteins. Our results indicate that: 1) the sperm-associated proteins, P25b and adenylate kinase 1, are linked to DRM of epididymal spermatozoa, but were exclusively associated with detergent-soluble material in ejaculated spermatozoa; 2) seminal plasma treatment of cauda epididymal spermatozoa significantly lowered the content of cholesterol and the ganglioside, GM1, in DRM; and 3), seminal plasma dissociates P25b from DRM in epididymal spermatozoa. We found that the seminal plasma protein, Niemann-Pick C2 protein, is involved in cholesterol and GM1 depletion within DRM, then leading to membrane redistribution of P25b that occurs in a very rapid and capacitation-independent manner. Together, these data suggest that DRM of ejaculated spermatozoa are reorganized by specific seminal plasma proteins, which induce lipid efflux as well as dissociation of DRM-anchored proteins. This process could be physiologically relevant in vivo to allow sperm survival and attachment within the female reproductive tract and to potentiate recognition, binding, and penetration of the oocyte.  相似文献   

14.
Mammalian spermatozoa acquire functionality during epididymal maturation, and the ability to penetrate and fertilize the oocyte during capacitation. The aim of this study was to assess the effects of epididymal maturation, ejaculation and in vitro capacitation on sperm viability, acrosome integrity, mitochondrial activity, membrane fluidity, and calcium influx, both as indicators of capacitation status and sperm motility. Results indicated that boar spermatozoa acquired the ability to move in the epididymal corpus; however, their motility was not linear until the ejaculation. Epididymal spermatozoa showed low membrane fluidity and intracellular calcium content; ejaculation led to an increased calcium content, while membrane fluidity showed no changes. Acrosome integrity remained constant throughout the epididymal duct and after ejaculation and in vitro capacitation. The frequency of viable spermatozoa with intact mitochondrial sheath was higher in caput and ejaculated samples than in corpus and cauda samples, whereas the frequency of spermatozoa with high membrane potential was significantly lower in cauda samples. In vitro capacitation resulted in a decreased frequency of viable spermatozoa with intact mitochondrial sheath and an increased frequency of spermatozoa with high membrane potential in ejaculated samples. These results indicated that both epididymal maturation and ejaculation are key events for further capacitation, because only ejaculated spermatozoa are capable of undergoing the set of changes leading to capacitation.  相似文献   

15.
16.
Epididymis provides a safe environment in which stored-spermatozoa could survive for days before ejaculation. In vitro studies suggested that epididymal proteins seem to be implicated in sperm survival during coincubation with cultured epididymal cells. This study was basically designed to confirm if secretory proteins from bovine epididymal cell cultures provide sperm protection against rapid loss of sperm motility in vitro. Bovine spermatozoa were incubated in conditioned media (CM), which were prepared from cultured cauda epididymal cell (CEC). Motion parameters were recorded using a computer-assisted sperm analyzer. Sperm-free protein extracts from CM were fractionated by ultrafiltration through a 10-kDa cut off membrane. A significantly positive effect on sperm motility was observed when spermatozoa were incubated in CM (54 +/- 4%) and CM > 10 kDa (57 +/- 4%) compared to CM < 10-kDa fraction (30 +/- 3%) or fresh media (34 +/- 3%), after a 6-hr incubation period. This beneficial effect on sperm motility was abolished when the CM > 10-kDa fraction was heat-treated at 100 degrees C for 10 min. The CM > 10 kDa fraction provides factors that remained active even though spermatozoa were washed twice after a 2-hr preincubation period. To identify potential beneficial factors, bovine spermatozoa were incubated with radiolabeled proteins obtained using (35)S-methionine in culture medium. SDS-PAGE analysis of proteins extracted from CM-preincubated spermatozoa revealed the presence of a 42-kDa protein strongly associated to the sperm surface. This 42-kDa spot was trypsin-digested and identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) as a protein homologue to a 35-kDa bovine estrogen-sulfotransferase. This protein can play a role in epididymal biology and sperm function. Taken together, these results suggest that specific epididymal proteins can be implicated in the sperm protection in vitro, and can be characterized in our cell culture system.  相似文献   

17.
Mammalian spermatozoa that have not completed final testicular sperm maturation have residual cytoplasm and increased creatine phosphokinase (CK) content. This study determined: (1) if CK could be detected by immunostaining cat spermatozoa from the caput, corpus, and cauda epididymis, (2) fluctuations in the proportions of spermatozoa with mature or immature CK-staining patterns during epididymal sperm transit, and (3) how well sperm maturity (as determined by a CK marker) correlated with testicular or epididymal dysfunctions associated with morphological sperm abnormalities. One epididymis was collected from each of 37 cats after orchiectomy and processed immediately to allow sperm morphology evaluations on a 'regional' basis. Sperm released from the contralateral epididymis were evaluated for motility, sperm membrane integrity, and immunostaining with CK-B antibodies. Proportions of spermatozoa with malformed or detached heads, proximal droplets and acrosomal or midpiece abnormalities decreased (P < 0.05) from the caput to the cauda epididymis. In contrast, proportions of spermatozoa that were motile, membrane-intact or with flagellar abnormalities or distal droplets increased (P < 0.05) from the caput to cauda region. Percentages of spermatozoa with an immature CK-staining pattern also decreased (P < 0.05) with epididymal transit (which differs from that reported for the human and stallion). There was no correlation (P > 0.05) between sperm morphology and the CK-staining patterns. In summary, the results reveal that some specific sperm malformations in the domestic cat are of testicular origin, whereas others develop during epididymal transit.  相似文献   

18.
We have identified an 80 kDa protein in ejaculated bull spermatozoa (p80) which is found in acrosomal and post-acrosomal areas of the head. It has a hyaluronidase activity and shares homologies with PH-20, a sperm surface glycoprotein involved in sperm-egg interaction. The aim of the present study was to characterize bull sperm p80 protein at the nucleic and amino acid levels to determine whether it is the bovine PH-20 ortholog. The complete nucleotide sequence determined by RT-PCR, 3' and 5' RACE show that bull p80, displays identity with the PH-20 nucleotide and amino acid sequences. Messenger RNA and protein expressions determined by Northern blot and immunohistochemistry revealed that the protein is testicular (expressed in spermatocytes and spermatids). The localization of p80 on spermatozoa, determined by indirect immunofluorescence using a monoclonal antibody, shows the protein in acrosomal and post acrosomal areas of the head with an increase in the signal intensity as sperm progress through the epididymis. Post-translational modifications of the protein were investigated during the epididymal maturation by Western blot on protein extracts from sperm collected in the caput, corpus and cauda portions of bull epididymis. Glycolysation status of sperm p80 protein on proteins from ejaculated and epididymidal sperm was investigated. Result show that the glycosylation status is modified as spermatozoa migrate through the epididymis. Hyaluronidase activity evaluated in protein extracts from spermatozoa of the three different epididymal sections revealed that the activity is higher at pH 7 than 4 and is not affected by epididymal maturation. These data strongly suggest that p80 is the bovine PH-20.  相似文献   

19.
Summary The seminal vesicles synthesize in an androgen-dependent manner a neutral protein of 13.5 kDa molecular weight that makes up about 40% of their secretion (major protein). An antiserum against this protein raised in rabbits was used to localize the antigen within the seminal vesicles. In addition to intraluminal secretion of the seminal vesicles and the ampulla of the vas deferens, ejaculated and ampullary spermatozoa revealed an intense immunoreaction, which was restricted to the neck region of the sperm head and the middle piece, while the principal piece of the tail as well as the sperm head were devoid of immunoreactive material. Comparison of spermatozoa taken from the tail of the epididymis with ampullary spermatozoa showed that about 90% of the latter, but only 10–20% of the former presented this distributional pattern of immunoreactive sites. Epididymal epithelium as well as calf seminal vesicle epithelium showed no immunoreactivity with major protein antiserum. Using a pre-embedding staining technique with gold-labeled primary or secondary antibodies, respectively, no immunostaining could be achieved at the ultrastructural level. Incubation experiments of epididymal spermatozoa in EGTA-containing solutions in the absence of calcium resulted in a gradual labilization and eventual loss of the plasma membrane of the sperm middle piece. After removal of (at least part of) the plasma membrane, bound major protein could be visualized immunohistochemically close to the mitochondria of the middle piece using a gold-labeled primary or secondary antibody. The acceptor site for major protein therefore seems to reside inside the plasma membrane of the sperm middle piece. Incubation of epididymal spermatozoa in phospholipase-containing solutions removed the acceptor site from the spermatozoa. Separation by polyacrylamide treatment of proteins from epididymal sperm cells extracted by sodium hydroxide or phospholipase treatment, subsequently transblotted on nitrocellulose sheets and directly labeled with gold-tagged major protein, demonstrated a protein duplet with a molecular weight of 65 and 67 kDa, respectively, which appears to represent the specific binder of major protein underneath the sperm surface. Binding of major protein to this 66 kDa acceptor site is regarded as a physiological event that may be related to the onset of hyperactivated sperm motility.Dedicated to Professor Dr. Th.H. Schiebler on the occasion of his 65th birthdayThis study was supported by the Deutsche Forschungsgemeinschaft (grant Au 48/7-8)  相似文献   

20.
Ash KL  Berger T  Horner CM  Famula TR 《Theriogenology》1994,42(7):1217-1226
This study was designed to compare differences among porcine sperm plasma membrane proteins with the ability of spermatozoa to interact with zona-free hamster ova. Sperm plasma membrane vesicles were recovered from 24 ejaculates from 10 fertile boars, and from cauda epididymal spermatozoa from 3 fertile and 1 very subfertile boar. Solubilized sperm plasma membrane proteins were run on 1D SDS-PAGE gels, transferred to western blots, stained, and analyzed for quantity of protein per band by scanning laser densitometry. Variation in the quantities of individual sperm plasma membrane proteins in the 20 identified bands were statistically compared with the ability of spermatozoa from the same ejaculate to penetrate zona-free hamster ova. The percentages of plasma membrane protein present in 3 bands (90, 84 and 60 kD) were positively correlated with the ability of spermatozoa from the same ejaculate to fuse with zona-free hamster ova (P = 0.002, 0.01, 0.04; R = 0.53, 0.40, 0.38, respectively). The quantities of protein in 2 other bands (69 and 35 kD) were significantly but negatively correlated with the results of the zona-free hamster ova bioassay (P = 0.02, 0.01; R = -0.42, -0.37, respectively). The sperm plasma membrane profiles were quantitatively similar between the ejaculated samples and the fertile epididymal samples. Six epididymal sperm plasma membrane proteins were present in statistically different quantities in the subfertile boar sample and the 3 fertile controls. The 90 kD band positively correlated with the hamster ova bioassay in the ejaculated samples was not detected in the subfertile epididymal sperm plasma membrane sample. These results suggest that protein(s) in one or more of the 3 positively correlated ejaculated sperm plasma membrane protein bands may be involved in sperm-oocyte interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号