首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The circumsporozoite (CS) protein of the Nuri strain of the simian malarial parasite Plasmodium knowlesi was expressed as a fusion protein in E. coli. This fusion protein cross-reacted with the polyclonal monkey sera raised against irradiated sporozoites of another strain (H strain) of P. knowlesi. The antibody against the repeat units of the H strain CS protein was affinity purified from the polyclonal sera by using synthetic repeat peptides. The affinity-purified antibody did not cross-react with the Nuri CS fusion protein. The immunogenicity of different regions of the CS protein was additionally studied by using several synthetic peptides. All but the most COOH-terminal peptide showed cross-reactivity with the polyclonal sera. Because the repeat regions of the CS protein of the two strains are diverse, whereas the non-repetitive regions are immunogenic and conserved, the latter may be better suited for a potential vaccine.  相似文献   

2.
The anamnestic antibody response to synthetic peptide antimalarial vaccines is under Ir gene control. It has therefore been inferred that the development of antibody responses to the native repetitive Ag of malaria parasites also requires linkage of T and B cell epitopes, presentation of Ag in the context of MHC class II components, and cognate T cell help for antibody production. In this study, we sought to test this assumption, by utilizing classical protocols to determine whether the antibody response to the repetitive surface Ag of malaria sporozoites, the circumsporozoite (CS) protein, is under Ir gene control. In contrast to vaccine constructs, such as recombinant proteins or synthetic peptides, secondary responses to the repetitive oligomeric domains of the native CS protein of intact malaria sporozoites do not require the presence of Ag-specific Th cells. Conferral of CS-specific Th cells does not appear to influence the magnitude of this thymus-independent response to sporozoites. In further contrast to synthetic CS analogs, exposure to the parasite appears to be associated with low levels of Ag-specific Th cell sensitization. These observations suggest a functional role in immune evasion for the immunodominant repetitive domains found within protein Ag of malaria and other parasites.  相似文献   

3.
Plasmodium falciparum sporozoites invade liver cells in humans and set the stage for malaria infection. Circumsporozoite protein (CSP), a predominant surface antigen on sporozoite surface, has been associated with the binding and invasion of liver cells by the sporozoites. Although CSP across the Plasmodium genus has homology and conserved structural organization, infection of a non-natural host by a species is rare. We investigated the role of CSP in providing the host specificity in P. falciparum infection. CSP from P. falciparum, P. gallinaceum, P. knowlesi, and P. yoelii species representing human, avian, simian, and rodent malaria species were recombinantly expressed, and the proteins were purified to homogeneity. The recombinant proteins were evaluated for their capacity to bind to human liver cell line HepG2 and to prevent P. falciparum sporozoites from invading these cells. The proteins showed significant differences in the binding and sporozoite invasion inhibition activity. Differences among proteins directly correlate with changes in the binding affinity to the sporozoite receptor on liver cells. P. knowlesi CSP (PkCSP) and P. yoelii CSP (PyCSP) had 4,790- and 17,800-fold lower affinity for heparin in comparison to P. falciparum CSP (PfCSP). We suggest that a difference in the binding affinity for the liver cell receptor is a mechanism involved in maintaining the host specificity by the malaria parasite.  相似文献   

4.
Avian and rodent malaria sporozoites selectively invade different vertebrate cell types, namely macrophages and hepatocytes, and develop in distantly related vector species. To investigate the role of the circumsporozoite (CS) protein in determining parasite survival in different vector species and vertebrate host cell types, we replaced the endogenous CS protein gene of the rodent malaria parasite Plasmodium berghei with that of the avian parasite P. gallinaceum and control rodent parasite P. yoelii. In anopheline mosquitoes, P. berghei parasites carrying P. gallinaceum and rodent parasite P. yoelii CS protein gene developed into oocysts and sporozoites. Plasmodium gallinaceum CS expressing transgenic sporozoites, although motile, failed to invade mosquito salivary glands and to infect mice, which suggests that motility alone is not sufficient for invasion. Notably, a percentage of infected Anopheles stephensi mosquitoes showed melanotic encapsulation of late stage oocysts. This was not observed in control infections or in A. gambiae infections. These findings shed new light on the role of the CS protein in the interaction of the parasite with both the mosquito vector and the rodent host.  相似文献   

5.
In the present study we analyzed the fine specificity of mouse monoclonal and human polyclonal antibodies directed against the repeat domain of the circumsporozoite (CS) protein of the human malaria parasite, Plasmodium vivax. Five synthetic peptides, representing monomeric and dimeric repeats of this malarial antigen, were assayed for their capacity to inhibit the binding of these antibodies to a yeast-derived recombinant CS protein. The results revealed the existence of at least two distinct repeated overlapping epitopes in the CS protein of P. vivax. Furthermore, polyclonal sera contain antibodies which recognize additional determinants not represented by the synthetic repeat peptides. Some of these sera contain antibodies recognizing a region flanking the repeat domain (region I). The present findings are in contrast with the antibody response in rodents and humans to the Plasmodium falciparum CS protein, which is directed against a single repeated immunodominant epitope.  相似文献   

6.
ABSTRACT. Monoclonal antibodies that react with the circumsporozoite protein of the avian malaria Plasmodium gallinaceum sporozoites also reacted with circumsporozoite protein of the rodent malaria Plasmodium berghei. Two types of reactivity were identified: 1) two monoclonal antibodies reacted with P. berghei sporozoite protein by enzyme-linked immunosorbent assay, Western blot and indirect immunofluorescence antibody, 2) six other monoclonal antibodies reacted with P. berghei sporozoites by ELISA and Western blot only. We studied whether these differences could be explained by reactivity in enzyme-linked immunosorbent assay with different P. berghei circumsporozoite peptides. Although all P. gallinaceum monoclonal antibodies reacted with the P. berghei repeats, the first group reacted with a conserved peptide sequence, N1, whereas the second group did not. These results suggest that circumsporozoite proteins from P. gallinaceum and P. berghei share common epitopes. the biological significance of our finding is not yet clear. Indeed, the cross-reactive monoclonal antibodies giving a positive indirect immunofluorescence antibody with the P. berghei sporozoites only caused a borderline effect on the living P. berghei parasites in vitro as measured by inhibition of sporozoite infectivity.  相似文献   

7.
SYNOPSIS. Sporozoites of rodent malaria, Plasmodium berghei , and simian malaria, Plasmodium knowlesi and Plasmodium cynomolgi , were partially separated from mosquito debris and microbial contaminants by passage of Anopheles material through a DEAE-cellulcse column. In addition to eliminating most of the contaminants (80–90%), this simple technic has made it possible to recover rapidly large numbers of viable sporozoites (55–75% yield), which have retained their infectivity, immunogenicity, and capacity to react with known antisera. Mice injected with varying doses of column-purified sporozoites (CS) of P. berghei produced infections which paralleled those seen in the controls. Total protection against challenge with a potentially lethal dose of viable sporozoites was acquired by mice inoculated twice with irradiated CS of P. berghei. CS of P. berghei and P. cynomolgi gave positive circumsporozoite precipitation (CSP) reactions, upon inoculation with the respective immune sera. The preservation of the surface antigens of CS was documented by immunofluorescence.
It was shown that differences in elution behavior exist among sporozoites of certain species of Plasmodium as well as among sporozoites of the same species derived from different organs of the mosquito. These results may be attributed to differences in the surface charge of the sporozoites or conditions in sample media.
Purified sporozoites obtained by the method described in this report provide an adequate source of parasites for a variety of in vitro studies.  相似文献   

8.
Sporozoites of rodent malaria, Plasmodium berghei, and simian malaria, Plasmodium knowlesi and Plasmodium cynomolgi, were partially separated from mosquito debris and microbial contaminants by passage of Anopheles material through a DEAE-cellulose column. In addition to eliminating most of the contaminants (80-90%), this simple technic has made it possible to recover rapidly large numbers of viable sporozoites (55-75% yield), which have retained their infectivity, immunogenicity, and capacity to react with known antisera. Mice injected with varying doses of column-purified sporozoites (CS) of P. berghei produced infections which paralleled those seen in the controls. Total protection against challenge with a potentially lethal dose of viable sporozoites was acquired by mice inoculated twice with irradiated CS of P. berghei CS of P. berghei and P. cynomolgi gave positive circumsporozoite precipitation (CSP) reactions, upon inoculation with the respective immune sera. The preservation of the surface antigens of CS was documented by immunofluorescence. It was shown that differences in elution behavior exist among sporozoites of certain species of Plasmodium as well as among sporozoiters of the same species derived from different organs of the mosquito. These results may be attributed to differences in the surface charge of the sporozoites or conditions in sample media. Purified sporozoites obtained by the method described in this report provide an adequate source of parasites for a variety of in vitro studies.  相似文献   

9.
The research efforts aimed at developing a vaccine against malaria, although failing thus far in their main objective, have produced molecular tools of great utility for epidemiological studies. For example, monoclonal antibodies directed against the repeats of Plasmodium circumsporozoite (CS) protein allowed the 2-site assay for detecting sporozoites in mosquitoes to be established. This immunoassay is advantageous compared with the conventional method of salivary gland dissection and microscopic examination, for it makes the identification of the sporozoite species possible, thanks to species-specific aminoacid sequences of the CS repeats. Other examples of vaccine research-derived tools are synthetic peptides reproducing the repetitive part of the CS protein, which allow antibodies to sporozoites, in individuals exposed to malaria, to be detected. Antibodies to the CS repeats of Plasmodium (Laverania) falciparum proved to be a reliable indicator of the intensity of malaria transmission and, therefore, were suitable for monitoring the impact of malaria control programmes. Finally, a project is outlined that, relying on the application of these tools, will aim at characterizing the transmission of Plasmodium (Plasmodium) malariae and at unveiling the possible relationship among different species thriving in the same distribution area, an issue which may become of relevance in view of the likely introduction of a vaccine directed against a single species.  相似文献   

10.
One of the primary strategies for malaria vaccine development has been to design subunit vaccines that induce protective levels of antibodies against the circumsporozoite (CS) protein of malaria sporozoites. In the Plasmodium yoelii mouse model system such vaccines have been uniformly unsuccessful in protecting against sporozoite-induced malaria. To demonstrate that antibodies to P. yoelii CS protein could provide protection we established a passive transfer model. Passive transfer of Navy yoelii sporozoite 1 (NYS1), an IgG3 mAb against the P. yoelii CS protein, protected 100% of mice against challenge with 5000 P. yoelii sporozoites. Binding of NYS1 to sporozoites was inhibited by incubation with (QGPGAP)2, a synthetic peptide derived from the repeat region of the P. yoelii CS protein, indicating that the epitope on sporozoites recognized by this mAb was included within this peptide. The levels of antibodies to (QGPGAP)2 by ELISA, and to sporozoites by indirect fluorescent antibody test and CS precipitation reaction were similar in sera from mice that received NYS1 in passive transfer and were protected against challenge with 5000 sporozoites, and from mice that had been immunized with subunit vaccines containing (QGPGAP)2 but were not protected against challenge with 40-200 sporozoites. To determine if antibody avidity, not absolute concentration could explain the striking differences in protection, we established a thiocyanate elution assay. The results suggest that NYS1, the protective mAb, has a lower avidity for (QGPGAP)2 and for sporozoites than do the vaccine-induced antibodies. Although the results of the conventional antibody assays did not correlate with protection, sera from the protected animals inhibited sporozoite development in mouse hepatocyte cultures significantly more than did the sera from the unprotected, subunit vaccine-immunized animals, correlating with protection. The data clearly demonstrate that antibodies to the CS protein can protect against intense sporozoite infection. Improved understanding of the differences between protective mAb and nonprotective polyclonal antibodies will be important in the further development of malaria vaccines.  相似文献   

11.
Minutes after injection into the circulation, malaria sporozoites enter hepatocytes. The speed and specificity of the invasion process suggest that it is receptor mediated. We show here that recombinant Plasmodium falciparum circumsporozoite protein (CS) binds specifically to regions of the plasma membrane of hepatocytes exposed to circulating blood in the Disse space. No binding has been detected in other organs, or even in other regions of the hepatocyte membrane. The interaction of CS with hepatocytes, as well as sporozoite invasion of HepG2 cells, is inhibited by synthetic peptides representing the evolutionarily conserved region II of CS. We conclude that region II is a sporozoite ligand for hepatocyte receptors localized to the basolateral domain of the plasma membrane. Our findings provide a rational explanation for the target cell specificity of malaria sporozoites.  相似文献   

12.
Plasmodium sporozoites, the causative agents of malaria, release circumsporozoite (CS) protein into medium when under conditions simulating those that the parasites encounter in the bloodstream of the vertebrate host. CS protein of the rodent parasite, Plasmodium berghei, is released as the lower molecular weight form, Pb44. This release is substratum- and antibody-independent. Previous studies show that CS protein is released at the trailing, posterior end of motile sporozoites. Video and electron microscopic studies now demonstrate that CS protein is released at the apical end of cytochalasin b-immobilized sporozoites. We propose that CS protein released from the apical end, the leading end of gliding sporozoites, adheres to the sporozoite surface and is translocated posteriorly by a cytochalasin-sensitive and apparently actin-mediated surface motor, which drives gliding motility. This model explains the mechanism of both the circumsporozoite precipitation (CSP) reaction and formation of the CS protein trail by gliding sporozoites.  相似文献   

13.
Plasmodium sporozoites, the causative agents of malaria, release circumsporozoite (CS) protein into medium when under conditions simulating those that the parasites encounter in the bloodstream of the vertebrate host. CS protein of the rodent parasite, Plasmodium berghei , is released as the lower molecular weight form, Pb44. This release is substratum- and antibody-independent. Previous studies show that CS protein is released at the trailing, posterior end of motile sporozoites. Video and electron microscopic studies now demonstrate that CS protein is released at the apical end of cytochalasin b-immobilized sporozoites. We propose that CS protein released from the apical end, the leading end of gliding sporozoites, adheres to the sporozoite surface and is translocated posteriorly by a cytochalasin-sensitive and apparently actin-mediated surface motor, which drives gliding motility. This model explains the mechanism of both the circumsporozoite precipitation (CSP) reaction and formation of the CS protein trail by gliding sporozoites.  相似文献   

14.
Malaria parasites do not contain or synthesize sialic acids   总被引:1,自引:0,他引:1  
The capacity of Plasmodia to synthesize sialic acids was investigated by adding radioactive acetate to short-term in vitro cultures of the intraerythrocytic asexual forms of three malaria parasites (the human malaria Plasmodium falciparum in Aotus trivirgatus erythrocytes; the simian malaria P. knowlesi in rhesus monkey erythrocytes; the rodent malaria P. berghei in mouse erythrocytes) and to cultures of extracellular zygotes of the avian malaria P. gallinaceum. Radioactive acetate was added to normal rhesus monkey erythrocytes and to cells of the murine myeloma NS-1 for comparison. Although [1-14C]-acetate labeled many proteins with each malaria parasite and the NS-1 cells, analysis of purified sialic acids revealed that only with the NS-1 cells was radioactivity incorporated into sialic acids. Furthermore, N-acetyl[6-3H]mannosamine was not incorporated into sialic acids or malarial glycoproteins when added to P. knowlesi cultures. All of the malaria parasites underwent growth or differentiation during these experiments as measured by [35S]methionine uptake into protein and by light microscopy. Extracellular parasites largely free of erythrocyte membranes were prepared to determine whether Plasmodia contain sialic acids that are not labeled by exogenous precursors. Purified merozoites of P. knowlesi and zygotes of P. gallinaceum did not contain detectable amounts of sialic acids on chemical analysis. Thus, although we could show that Plasmodia can incorporate radioactive sugars such as glucosamine, galactose and mannose into proteins, presumably glycoproteins, they do not synthesize sialic acids or sialo-glycoproteins, nor do they contain sialo-glycoconjugates of host origin.  相似文献   

15.
The fine specificities of antibodies to the circumsporozoite (CS) protein of Plasmodium falciparum, present in the sera of volunteers immunized with irradiated P. falciparum sporozoites, were defined and compared to those of sera from persons living in a malaria-endemic area in West Africa. The specificity of these anti-CS antibodies was determined by ELISA, using recombinant proteins and synthetic peptides containing repeat and nonrepeat sequences of this CS protein. All 10 serum samples of the five sporozoite-immunized volunteers displayed very high antibody titers to the immunodominant repeat (NANP)n of the CS protein. However, only three of the serum samples of these vaccinees reacted with a single nonrepeat region and only at low titers. In contrast, a high percentage of sera from adults living in the malaria-endemic area who had been exposed to sporozoites, as well as liver and blood stages of P. falciparum, had high antibody levels, not only to the repeats but also to several nonrepeat regions of the CS protein. Furthermore, a number of sera from children living in this endemic area displayed appreciable levels of antibodies to the nonrepeat regions, in the absence of any antirepeat reactivity. Sera of Saimiri monkeys, which had undergone multiple blood-induced P. falciparum infections, consistently contained high titers of antibodies to several nonrepeat sequences of the CS protein, whereas only a few of these sera had low titers of antirepeat antibodies. Antibody binding sites, in nonrepeat regions, were mapped using synthetic polymers containing multiple copies of selected C-terminal sequences of the P. falciparum CS protein. The binding to sporozoites of antibodies to nonrepeat regions of the CS protein was determined. The basis for the differences in antibody binding sites of sera from persons immunized with irradiated sporozoites, compared to those from an endemic area, is discussed.  相似文献   

16.
A malaria scavenger receptor-like protein essential for parasite development   总被引:10,自引:0,他引:10  
Malaria parasites suffer severe losses in the mosquito as they cross the midgut, haemolymph and salivary gland tissues, in part caused by immune responses of the insect. The parasite compensates for these losses by multiplying during the oocyst stage to form the infectious sporozoites. Upon human infection, malaria parasites are again attenuated by sustained immune attack. Here, we report a single copy gene that is highly conserved amongst Plasmodium species that encodes a secreted protein named PxSR. The predicted protein is composed of a unique combination of metazoan protein domains that have been previously associated with immune recognition/activation and lipid/protein adhesion interactions at the cell surface, namely: (i) scavenger receptor cysteine rich (SRCR); (ii) pentraxin (PTX); (iii) polycystine-1, lipoxygenase, alpha toxin (LH2/PLAT); (iv) Limulus clotting factor C, Coch-5b2 and Lgl1 (LCCL). In our assessment the PxSR molecule is completely novel in biology and is only found in Apicomplexa parasites. We show that PxSR is expressed in sporozoites of both human and rodent malaria species. Disruption of the PbSR gene in the rodent malaria parasite P. berghei results in parasites that form normal numbers of oocysts, but fail to produce any sporozoites. We suggest that, in addition to a role in sporogonic development, PxSR may have a multiplicity of functions.  相似文献   

17.
Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and first invade the liver of the mammalian host, as an obligatory step of the life cycle of the malaria parasite. Within hepatocytes, Plasmodium sporozoites reside in a membrane-bound vacuole, where they differentiate into exoerythrocytic forms and merozoites that subsequently infect erythrocytes and cause the malaria disease. Plasmodium sporozoite targeting to the liver is mediated by the specific binding of major sporozoite surface proteins, the circumsporozoite protein and the thrombospondin-related anonymous protein, to glycosaminoglycans on the hepatocyte surface. Still, the molecular mechanisms underlying sporozoite entry and differentiation within hepatocytes are largely unknown. Here we show that the tetraspanin CD81, a putative receptor for hepatitis C virus, is required on hepatocytes for human Plasmodium falciparum and rodent Plasmodium yoelii sporozoite infectivity. P. yoelii sporozoites fail to infect CD81-deficient mouse hepatocytes, in vivo and in vitro, and antibodies against mouse and human CD81 inhibit in vitro the hepatic development of P. yoelii and P. falciparum, respectively. We further demonstrate that the requirement for CD81 is linked to sporozoite entry into hepatocytes by formation of a parasitophorous vacuole, which is essential for parasite differentiation into exoerythrocytic forms.  相似文献   

18.
We describe here the sequence of the circumsporozoite protein gene of the monkey malaria parasite Plasmodium brasilianum and show that the immunodominant repeat domain is the same as that of the human malaria parasite, Plasmodium malariae. The immunodominant epitope on the surface of sporozoites of a third species of human malaria parasite has, therefore, been identified. This genetic based data and the biological similarities between P. brasilianum and P. malariae support their putative zoonotic/anthroponotic relationship. We also show that an ape malaria parasite, Plasmodium reichenowi, and the human malaria parasite, Plasmodium falciparum, have a similar relationship. The implications of these observations are discussed with respect to vaccine development.  相似文献   

19.
In order to provide a rational basis for the development of a pre-erythrocytic malaria vaccine we have aimed at: (a) elucidating the mechanisms of protection, and (b) identifying vaccine formulations that best elicit protection in experimental animals and humans. Based on earlier successful immunization of experimental animals with irradiated sporozoites, human volunteers were exposed to the bites of large numbers of Plasmodium falciparum or P. vivax infected irradiated mosquitoes. The result of this vaccine trial demonstrated for the first time that a pre-erythrocytic vaccine, administered to humans, can result in their complete resistance to malaria infection. However, since infected irradiated mosquitoes are unavailable for large scale vaccination, the alternative is to develop subunit vaccines. The human trials using irradiated sporozoites provided valuable information on the human immune responses to pre-erythrocytic stages and studies on mice an excellent experimental model to characterize protective immune mechanisms. The circumsporozoite protein, the first pre-erythrocytic antigen identified, is present in all malaria species, displaying a similar structure, with a central region of repeats, and two conserved regions, essential for parasite development. Most pre-erythrocytic vaccine candidates are based on the CS protein, expressed in various cell lines, microorganisms, and recently the corresponding DNA. We and others have identified CS-specific B and T cell epitopes, recognized by the rodent and human immune systems, and used them for the development of synthetic vaccines. We used synthetic peptide vaccines, multiple antigen peptides and polyoximes, for immunization, first in experimental animals, and recently in two human safety and immunogenicity trials. We also report here on our work on T cell mediated immunity, particularly the protection of mice immunized with viral vectors expressing CS-specific cytotoxic CD8+ T cell epitopes, and the striking booster effect of recombinant vaccinia virus. To what degree CD8+ T cells, and/or other T cells specific for sporozoites and/or liver stage epitopes, contribute to pre-erythrocytic protective immunity in humans, remains to be determined.  相似文献   

20.
As Plasmodium sporozoites undergo gliding motility in vitro, they leave behind trails of circumsporozoite (CS) protein that correspond to their patterns of movement. This light microscopic observation was made using Plasmodium berghei sporozoites, a monoclonal antibody (MAb H4) directed against the immunodominant repetitive epitope of the CS protein of P. berghei, and an immunogold-silver staining (IGSS) technique. Sporozoites pretreated with agents that inhibit sporozoite motility and invasiveness did not produce trails. Sporozoites that glided on microscope slides coated with MAb H4 left behind considerably longer CS protein trails than those on uncoated slides, and the staining of these trails was more intense. The fact that the CS protein is an exoantigen continuously released as trails by motile sporozoites, together with our previous finding that anti-CS protein antibodies inhibit sporozoite motility, strongly suggests that the CS protein plays a role in gliding motility. The sensitive IGSS technique used in this study may be a useful tool in the study of the translocation of surface proteins during gliding of other apicomplexans, other protists, and bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号